论文部分内容阅读
采用SiGe BiCMOS工艺设计了一款大功率高效率硅基功率放大器芯片,用于驱动现有大功率GaN功率放大器芯片,满足相控阵雷达的低成本需求。该硅基功率放大器通过和低噪声放大器、驱动放大器、数控移相器、数控衰减器、单刀双掷开关、电源管理以及数字逻辑单元等硅基电路进一步集成,实现了一片式高集成度硅基幅相多功能芯片,从而降低了前端收发组件的尺寸和成本。在硅基功率放大器设计中,结合Stack结构、变压器耦合结构和有源偏置结构,开展电路设计及优化,提高了放大器的输出功率和效率。测试结果表明:研制的硅基功率放大器在Ku波段f_1~f_2(3GHz带宽)频带内,实现了小信号增益31dB;在-3dBm输入功率条件下,实现发射功率21.5dBm、功率附加效率(PAE)25%等技术指标。集成功率放大器的幅相多功能芯片在f_1~f_2(3GHz带宽)频带内,实现了发射通道增益24dB;在5dBm输入功率条件下发射功率21.5dBm、功率附加效率(PAE)23%等技术指标。
SiGe BiCMOS process is used to design a high power and high efficiency silicon based power amplifier chip for driving the existing high power GaN power amplifier chip to meet the low cost requirement of the phased array radar. The silicon-based power amplifier is further integrated with silicon-based circuits such as low-noise amplifiers, driver amplifiers, digital phase shifters, digital attenuators, single-pole double-throw switches, power management and digital logic cells to enable a one-piece, highly integrated silicon base Multi-function chip, thus reducing the size and cost of front-end transceivers. In silicon power amplifier design, combining the Stack structure, the transformer coupling structure and the active bias structure, the circuit design and optimization are carried out to improve the output power and efficiency of the amplifier. The test results show that the developed silicon-based power amplifier achieves a small signal gain of 31dB in the Ku band f_1 ~ f_2 (3GHz bandwidth) band and a transmit power of 21.5dBm and PAE at -3dBm input power. 25% and other technical indicators. In the f_1 ~ f_2 (3GHz bandwidth) frequency band, the integrated power amplifier with amplitude-phase multi-function chip achieves the transmission channel gain of 24dB, the transmission power of 21.5dBm at 5dBm input power, and the power added efficiency (PAE) of 23%.