论文部分内容阅读
针对传统的基于遗传神经网络的入侵检测模型未考虑误分类代价的不足,将误分类代价敏感的特征集成到基于遗传神经网络的网络入侵检测模型中,从而克服了传统模型中错误分类时可能导致代价过大的缺点。通过实验结果表明,增加了误分类代价敏感特征后的遗传神经网络能较好地控制网络入侵检测系统误报、漏报攻击时所产生的代价。