论文部分内容阅读
研究将粒子群优化算法与BP神经网络相结合,建立新的钢水终点温度预报模型.确定加热功率、初始温度、精炼时间等8个影响钢水终点温度的主要因素作为神经网络的输入量.用粒子群优化算法优化神经网络参数,改善神经网络温度预测模型的收敛性能.实验结果表明,该算法可以提高预测速度和精度,预测结果误差不大于±5℃的炉次大于90%.