论文部分内容阅读
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data sets and two reanalysis data sets. The trends of the SCS sea surface temperature(SST) have changed from warming to cooling since the late 1990 s. A heat budget analysis suggests that the warming of the surface mixed layer during 1984–1999 is primarily attributed to the horizontal heat advection and the decrease of upward long wave radiation, with the net surface heat flux playing a damping role due to the increase of upward latent and sensible heat fluxes. On the other hand, the cooling of the surface mixed layer during 2000–2009 is broadly controlled by net surface heat flux, with the radiation flux playing the dominant role. A possible mechanism is explored that the variation of a sea level pressure(SLP) over the North Pacific Ocean may change the prevailing winds over the SCS, which contributes to the change of the SST in the SCS through the horizontal heat advection and heat fluxes.
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea (SCS) is investigated based on several objectively analyzed data sets and two reanalysis data sets. The trends of the SCS sea surface temperature (SST) have changed from warming to cooling since the late 1990 s. A heat budget analysis suggests that the warming of the surface mixed layer during 1984-1999 is primarily attributed to the horizontal heat advection and the decrease of upward long wave radiation, with the net surface heat flux playing a damping role due to the increase of upward latent and sensible heat fluxes. On the other hand, the cooling of the surface mixed layer during 2000-2009 is broadly controlled by net surface heat flux, with the radiation flux playing the dominant role. A possible mechanism is explored that the variation of a sea level pressure (SLP) over the North Pacific Ocean may change the prevailing winds over the SCS, which contributes to the change of the SST in t he SCS through the horizontal heat advection and heat fluxes.