论文部分内容阅读
To improve the strength, toughness, heat-resistance and deformability of magnesium alloy, the microstructure and mechanical properties of ZK60 alloy strengthened by Mg-Zn-Nd spherical quasi-crystal phase (I-phase) particles were investigated. Mg40Zn55Nd5 (I-phase) particles in addition to α-Mg, MgZn phase and MgZn2 phases can be obtained in ZK60-based composites under normal casting condition by the addition of quasi-crystal containing Mg-Zn-Nd master alloy. The experimental results show that the introduction of Mg-Zn-Nd spherical quasi-crystal phase into ZK60 alloy makes a great contribution to the refinement of the matrix microstructures and the improvement of mechanical properties. While adding Mg-Zn-Nd spherical quasi-crystal master alloy of 4.0wt.%, the ultimate tensile strength and yield strength of ZK60-based composite at ambient temperature reach their peak values of 256.7 MPa and 150.4 MPa, which were about 17.8% and 24.1% higher respectively than those of the ZK60 alloy. The improved mechanical properties are mainly attributed to the pinning effect of the quasi-crystal particles (I-phase) at the grain boundaries. This research results provide a new way for strengthening and toughening of magnesium alloys as well as a new application of Mg-based spherical quasi-crystals.
To improve the strength, toughness, heat-resistance and deformability of magnesium alloy, the microstructure and mechanical properties of ZK60 alloy strengthened by Mg-Zn-Nd spherical quasi-crystal phase (I-phase) particles were investigated. Mg40Zn55Nd5 ) particles in addition to α-Mg, MgZn phase and MgZn2 phases can be obtained in ZK60-based composites under normal casting condition by the addition of quasi-crystal containing Mg-Zn-Nd master alloy. The experimental results show that the introduction of Mg-Zn-Nd spherical quasi-crystal phase into ZK60 alloy makes a great contribution to the refinement of the matrix microstructures and the improvement of mechanical properties. While adding Mg-Zn-Nd spherical quasi-crystal master alloy of 4.0 wt.%, the ultimate tensile strength and yield strength of ZK60-based composite at ambient temperature reach their peak values of 256.7 MPa and 150.4 MPa, which were about 17.8% and 24.1% higher respectively than those of the ZK60 alloy. improved mechanical properties are mainly attributed to the pinning effect of the quasi-crystal particles (I-phase) at the grain boundaries. This research results provide a new way for strengthening and toughening of magnesium alloys as a new application of Mg-based spherical quasi-crystals.