论文部分内容阅读
传统的基于粗糙集与支持向量机的故障诊断方法在用支持向量机分类前用粗糙集进行数据约简,仅将粗糙集作为数据约简的工具,忽视了粗糙集所获取的决策规则对原有数据中所隐含知识的概括表达作用。本文提出了一种改进的基于粗糙集与支持向量机的故障诊断方法,首先基于粗糙集对样本数据进行约简和初步决策规则获取,然后将获取的规则作为先验知识集成到支持向量机中进行故障诊断。该方法结合了粗糙集的处理高维数据的优点和支持向量机具有较高推广能力的优势,并且在用支持向量机分类时有效地利用了粗糙集获取的决策规则,提高了故障诊断的准确率