论文部分内容阅读
针对现有光伏功率预测技术存在提取特征不充分导致预测精度低的问题,提出一种基于深度置信网络的光伏发电短时功率预测方法。根据光伏发电系统的运行特征和深度置信网络的特点,阐述该预测方法的可行性和科学性。搭建功率预测模型,通过无监督学习过程逐层提取输入序列的内在特征;模型顶层采用BP神经网络对特征矩阵和偏移量进行有监督训练,经过误差微调后输出预测结果。综合考虑可能对光伏发电功率产生影响的多种因素(如辐射强度、温度等),并将上述因素做归一化处理后作为模型的初始输入量,在Matlab上对预测模型进行仿真验证。最后将该