论文部分内容阅读
稀有类分类在许多领域有重要应用,针对稀有类在数据中所占比例少,容易被忽略的特点,提出一种基于聚类和Ripper的稀有类分类方法,该方法在一趟聚类的结果中,通过将在整个数据集中所占的比例低于15%的聚类标识为少数类,再应用Ripper分类算法分别对少数类和多数类分别进行分类建模,并按照一定的组合方式调整得出整个数据集的最终规则集。在UCI数据集上的测试结果表明,基于一趟聚类和Ripper的稀有类分类方法对稀有类可产生高质量的分类效果。可以将该方法应用于现实生活的领域中进行稀有数据的分类。