【摘 要】
:
传统的串行抵消比特翻转(SCF)译码算法仅用对数似然比(LLR)的绝对值去衡量信息比特译码结果的可靠情况,导致误块率(BLER)过高和翻转的尝试次数较多.提出一种串行抵消比特翻转译码算法PLR-SCF,分析SC译码算法发生错误译码的原因,通过仿真观察LLR、极化信道可靠度和信息位所在的位置与SC译码算法发生首个判决错误之间的关系,并利用上述因素设计一个能准确衡量信息位发生译码错误程度的度量公式.仿真结果表明,相对于传统的SCF译码算法,该算法能够有效降低BLER,特别是在高信噪比下获得的最大信噪比增益约为
【机 构】
:
重庆邮电大学 通信与信息工程学院 光通信与网络重点实验室,重庆 400065
论文部分内容阅读
传统的串行抵消比特翻转(SCF)译码算法仅用对数似然比(LLR)的绝对值去衡量信息比特译码结果的可靠情况,导致误块率(BLER)过高和翻转的尝试次数较多.提出一种串行抵消比特翻转译码算法PLR-SCF,分析SC译码算法发生错误译码的原因,通过仿真观察LLR、极化信道可靠度和信息位所在的位置与SC译码算法发生首个判决错误之间的关系,并利用上述因素设计一个能准确衡量信息位发生译码错误程度的度量公式.仿真结果表明,相对于传统的SCF译码算法,该算法能够有效降低BLER,特别是在高信噪比下获得的最大信噪比增益约为0.12 dB,翻转尝试次数与SCF减少13.6%.
其他文献
基于位置的路网Skyline查询可根据用户的需求及用户所处的位置,从大量数据中快速返回给用户期望的数据,但已有的道路网络技术需要计算大量的路网距离及数据点间支配关系的运算,导致查询效率较低.提出一种基于路网数据点的倒排索引查询算法DSR.通过计算少量数据点的路网距离求得最终结果,减小路网距离计算的代价,从而加快数据点间支配关系的判定,提升查询效率.在此基础上,在数据点更新情况下给出算法的动态维护,仅通过维护少量数据,DSR即可以快速地计算出Skyline集合.实验结果表明,与SSI、BSS等算法相比,该算
作为SIMD扩展部件向量化的重要手段,自动向量化已在LLVM编译器中得到实现,但向量长度以及指令集功能的差异,导致国产平台在自动向量化过程中容易错失向量化机会以及向量化后产生倒加速的问题.为使SIMD得到充分应用,结合国产平台的指令集特征完善指令代价信息以提高收益分析精准度,使其在自动向量化后生成后端支持且简洁高效的向量指令.在此基础上,提出一种改进的控制流向量化方法,通过添加指令代价信息提高自动向量化的适配能力,从而形成一套面向国产平台的L LV M自动向量化系统.实验结果表明,相比自动向量化移植前,通
火车作为我国交通工具的重要组成部分,在我国运输行业中扮演着重要的角色。随着火车车辆的运行,其车厢表面的油漆标记会逐渐磨损或者破坏。当前,火车车厢标记的喷涂作业是通过人工喷涂方式来完成。但人工喷涂方式存在喷涂效率低、涂料浪费以及危害作业人员健康等缺点。因此,本文研究了一种自动喷码机器人,实现了火车车厢标记的自动喷码,从而有效的提高喷涂效率,降低涂料浪费,保障作业人员的健康等。本文主要从以下方面进行研
代码克隆是软件开发过程中常见的开发方式,随着开源组件、代码复用技术和开发框架等技术在程序开发中扮演越来越重要的角色,克隆代码的数量也随之快速增长。虽然代码克隆在一定程度上提高了程序开发效率,但也对软件管理及维护产生了负面影响,包括软件缺陷传播、恶意代码传播等。代码相似性分析技术旨在通过自动化的方式对克隆代码进行检测,降低克隆代码带来的负面影响。同时,随着软件产业的不断发展,代码相似性分析技术也越来
在软件定义网络与网络功能虚拟化协同的网络架构下,只考虑单个服务质量(QoS)指标的服务功能链部署无法满足用户的多业务体验需求.提出一种基于机器学习的服务功能链部署模型.基于层次分析法构造MPNQ2算法以建立QoS与体验质量(QoE)的映射关系,得出影响QoE的网络参数并评估其影响权重.在此基础上,利用具备较强综合学习和泛化能力的随机森林模型对服务功能链的QoE进行预测.实验结果表明,与梯度提升决策树、线性判别分析等机器学习模型相比,随机森林模型为预测QoE的最佳模型,同时在影响QoE的网络参数中,丢包率对
现有OpenMP调度策略通常采用动态策略处理程序中的线性循环结构,存在负载不均衡和调度开销大的问题.提出一种针对线性递增或线性递减循环结构的非线性静态调度策略Nonlinear_static.将线性循环负载均匀变化参数与总负载、负载峰值、线程数相结合构建调度模型,计算循环迭代在线程上的映射,使迭代块大小呈非线性递增或递减趋势.将线性循环的负载平均地分配在每个线程上,并在开源OMPi编译器中进行编码.在Adjoint Convolution、Compute Pots、Matrix Multiplicatio
得益于高频段丰富的频谱资源,基于毫米波的无线通信系统是未来提升业务服务能力重要手段之一。由于毫米波信号的高路径损耗特点,需要利用波束赋形技术形成高增益的窄波束进行通信。在高速移动场景下,由于收发端相对位置的不断变化,需要频繁地进行波束赋形。然而,传统的波束赋形算法需要进行复杂度较高的信道估计,造成较大的系统开销。由于毫米波的短波长特点,收发机之间的通信链路越来越短,趋近于视距连接,可以通过视觉图片
传统的RGB-D视觉同时定位与制图(SLAM)算法在动态场景中识别动态特征时会产生数据错误关联,导致视觉SLAM估计姿态精度退化.提出一种适用于动态场景的RGB-D SLAM算法,利用全新的跨平台神经网络深度学习框架检测场景中的动态语义特征,并分割提取对应的动态语义特征区域.结合深度图像的K均值聚类算法和动态语义特征区域对点特征深度值进行聚类,根据聚类结果剔除动态特征点,同时通过剩余特征点计算RGB-D相机的位姿.实验结果表明,相比ORB-SLAM2、OFD-SLAM、MR-SLAM等算法,该算法能够减小
针对现有微表情自动识别方法准确率较低及微表情样本数量不足的问题,提出一种融合迁移学习技术与可分离三维卷积神经网络(S3D CNN)的微表情识别方法.通过光流法提取宏表情和微表情视频样本的光流特征帧序列,利用宏表情样本的光流特征帧序列对S3D CNN进行预训练,并采用微表情样本的光流特征帧序列微调模型参数.S3D CNN网络由二维空域卷积层及添加一维时域卷积层的可分离三维卷积层构成,比传统的三维卷积神经网络具有更好的学习能力,且减少了模型所需的训练参数和计算量.在此基础上,采用迁移学习的方式对模型进行训练,
置信传播(BP)算法作为极化码最常用的软判决输出译码算法之一,具有并行传输、高吞吐量等优点,但其存在收敛较慢、运算复杂度高等缺陷.提出一种基于循环神经网络的偏移最小和近似置信传播译码算法.通过偏移最小和近似算法替代乘法运算,修改迭代过程中的消息更新策略,并运用改进的循环神经网络架构实现参数共享.仿真结果表明,相比传统BP译码算法,该译码算法在提升误码率(BER)性能的前提下,减少约75%的加法运算且收敛速度大幅提升,相比基于深度神经网络的BP译码算法,该算法在确保BER性能无显著下降的前提下,使用加法运算