论文部分内容阅读
We present the scheme of the structure of grading a resistor-heated system of warm compaction in powder metallurgy. The structure has the first heater and the second heater that are heated by electrical tubes. Powder is heated in turn in the first heater and the second heater, where there is the mass fluidity of powder under gravity. The dimensions of the first heater and the second heater were calculated from the Fourier equation of heat conduction, and the boundary condition was constant temperature. The drawings of the first heater, the second heater and the powder-delivering device were given. The structure of the heat equipment is simple and easy to manufacture. Finally, an exact warm compaction press system HGWY-Ⅱ was developed for the heating system.
We present the scheme of the structure of grading a resistor-heated system of warm compaction in powder metallurgy. The structure has the first heater and the second heater that are heated by electrical tubes. Powder is heated in turn in the first heater and the second heater, where there is the mass fluidity of powder under gravity. The dimensions of the first heater and the second heater were calculated from the Fourier equation of heat conduction, and the boundary condition was constant temperature. The drawings of the first heater, the second The structure of the heat equipment is simple and easy to manufacture. Finally, an exact warm compaction press system HGWY-II was developed for the heating system.