论文部分内容阅读
Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-ex-traction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for RSNF, it is necessary to understand the hydro-dynamic characteristics of the extraction systems in ACCs. The phase ratio (R = Vaq/Vorg, A/O) and liquid holdup volume (V) of the ACC are important hydrodynamic characteristics. In this study, a liquid-fast-separation method was used to systematically investigate the effects of the operational and structural parameters on the V and R (A/O) of a φ20 ACC by using a 30%TBP/kerosene-HNO3 solution system. The results showed that the oper-ational and structural parameters had different effects on the V and R (A/O) of the mixing and separating zones of the ACC, respectively. For the most frequently used structural parameters of the φ20 ACC, when the rotor speed was 3500 r/min, the total flow rate was 2.0 L/h, and the flow ratio (A/O) was 1, the liquid holdup volumes in the mixing zone and rotor were 8.03 and 14.0 mL, respectively, and the phase ratios (A/O) of the mixing zone and separating zone were 0.96 and 1.43, respectively.