论文部分内容阅读
提出一种基于Hilbert谱奇异值的故障特征提取方法,将其与支持向量机结合应用于轴承故障诊断。利用小波阈值降噪的方法对拾取的轴承故障振动信号进行滤波降噪,然后利用经验模式分解将降噪信号分解为若干个IMF分量之和,对每个IMF分量进行Hilbert变换得到振动信号的Hilbert谱,对Hilbert谱进行奇异值分解得到反映轴承状态特征的奇异值序列,再利用奇异值作为特征向量,应用支持向量机进行轴承故障诊断,并对不同核函数的诊断结果进行了分析比较。对正常轴承、内圈故障、外圈故障、滚动体故障的实际信号的诊断验证了