论文部分内容阅读
【摘要】数学思维的批判性是一种思维品质,它指学生在思维活动中善于估计思维材料、检查思维过程,不盲从、不轻信。数学思维的敏捷性是指思维过程的简缩性和快速性,处理问题和解决问题时能适应 紧急的情况,迅速作出正确判断
【关键词】数学思维;批判性;敏捷性
数学思维的批判性是一种思维品质,它指学生在思维活动中善于估计思维材料、检查思维过程,不盲从、不轻信。思维的批判性来自学生对思维活动各环节、各方面的调整、校正,即自我意识。这种自我意识的“调 整”“校正”又来自学生对问题本质的认识。只有深刻的认识、周密的思考,才能全面正确地作出判断。因此,思维的批判性是在深刻性基础上发展起来的思维品质。
小学数学思维的批判性,在概括过程中表现为善于精细地估计数学材料,准确选择推理条件;善于从正反 两方面思考推理过程,并能及时调整和校正。在推理过程中表现为善于从不同角度、正反两方面去理解概念, 区分相近概念;善于区别不同的运算法则、定律、性质及其适用的条件;善于发现并指出理解过程中可能出现的错误倾向,排除错误的干扰。在运算过程中表现为解决数学问题时善于排除无关因素的影响;善于进行辩证 地思索与分析,自觉检查思维过程,自我控制和调整思维方向,对解答结果能自觉作出估计和检验。在维理效 果上表现为推断、估计、自学以及对结论与推理过程进行评价的能力较强。
怎样培养和训练学生科学思维的批判性?
在掌握知识的过程中,教师要鼓励学生独立思考,发表自己的见解,形成“自由争辩”的学风。小学生往往受思维定势的影响,盲目随从,这不利于增强思维的批判性。为克服学生的盲从心理,教师有时可故意制造 一些错误,让学生去发现、评价。如教学三角形面积,出示左图,要求学生根据图中数据用两种方法求图形面 积(单位:厘米)。学生计算后发现,两组相对应的底和高求出的面积不相等。这样设计,在审题 时即对题目条件的可靠性进行论证,无疑培养了学生思维的批判性。
在运用知识解决数学问题的过程中,教师应着力培养学生“自我反省”的习惯。由于学生自我意识的发展 还不成熟,往往忽视自己的内部心理活动,对自己思维的破绽、错误不易注意。因此,在组织练习的过程中, 要经常引导学生反省自己的思维,自觉地表述思维过程,自觉地加以检验。
数学思维的敏捷性是指思维过程的简缩性和快速性。具有这一思维品质的人处理问题和解决问题时能适应 紧急的情况,迅速作出正确判断。在数学学习中,具有这一品质的学生能缩短运算环节和推理过程,“直接” 得到结果。克鲁捷茨基的研究表明,推理的缩短取决于概括,“能‘立即’进行概括的学生,也能‘立即’进 行推理的缩短。”
小学生数学思维的敏捷性,在概括过程中表现为善于快速地概括出数、式、形和数量关系中的数学特征、规律以及相应的解题技巧。在理解过程中表现为善于迅速地抓住数学问题的实质,熟练地进行等价变换。
培养和训练学生思维的敏捷性,在掌握知识的过程中,要注意抓基础促迁移,于简明的结构中包含较大的知识容量,把小学数学中的基本概念和基本原理放在教材的中心地位,作为教材的基本结构,并充分发挥这种知识结构所具有的知识之间的联结和转换功能。例如,以“两商之差”数量关系为基本结构的应用题,抓住a/ b-a/c=f这一结构形式,就可把以下具有可逆关系的12种题型统一在这个关系之中。
(1)原计划30天生产360台机器,实际20天完成。实际每天比原计划多生产多少台?(360/20-360/30=f)
(2)生产360台机器,原计划每天生产12台,实际每天生产18台。实际可提前几天?(360/12-360/18=f)
(3)原计划30天生产360台机器,实际每天多生产6台,实际多少天完成?(360/b-360/30=6)
(4)生产360台机器,实际每天生产18台,结果提前10天完成。原计划每天生产几台?(360/b-360/18=10)
(5)生产360台机器,实际20天完成,每天比原计划多生产6台,原计划多少天完成?(360/20-360/c=6)
(6)生产360台机器,原计划每天生产12台,实际提前10天完成,实际每天生产几台?(360/12-360/c=10)
(7)生产一批机器,原计划30天完成,实际20天完成。实际每天比原计划多生产6台,这批机器有多少台? (a/20-a/30=6)
(8)生产一批机器,原计划每天生产12台,实际每天生产18台,结果提前10天完成,这批机器有多少台?( a/12-a/18=10)
(9)生产360台机器,原计划完成的时间是实际的1.5倍,实际每天比原计划多生产6台,实际多少天完成? (360/b-360/1.5b=6)
(10)生产360台机器,实际每天生产的是原计划的1.5倍,实际提前6天完成。原计划每天生产多少台?(36 0/b-360/1.5b=6)
(11)生产360台机器,实际完成的天数是原计划的2/3,实际每天比原计划多生产6台,原计划多少天完成? [360/(2c/3)-360/c=6]
(12)要生产360台机器,原计划每天生产的是实际的2/3,实际提前10天完成,实际每天生产多少台?[360 /(2c/3)-360/c=10]
这是一种结构的方法。这种方法高于用单纯分析和说明数量关系的解释方法。其本质是从相互联系相互作 用的内在规律上揭示数量关系。而且研究数量关系的结构形式,可以运用迁移的规律解决同构异素问题。某些 应用题尽管在具体内容上不同,但实际上具有相似的结构形式,这就是同构异素问题。教学时可以使形式超脱 内容,把不同题材中共同的结构形式分离出来,进一步抽象化、符号化,只研究结构形式之间的关系。一般来说,概括程度越高,迁移量也就越大。小学数学中按照抓基础、促迁移、简结构、大容量的原则来组织教学内容,有利于培养学生数学思维的敏捷性。
【关键词】数学思维;批判性;敏捷性
数学思维的批判性是一种思维品质,它指学生在思维活动中善于估计思维材料、检查思维过程,不盲从、不轻信。思维的批判性来自学生对思维活动各环节、各方面的调整、校正,即自我意识。这种自我意识的“调 整”“校正”又来自学生对问题本质的认识。只有深刻的认识、周密的思考,才能全面正确地作出判断。因此,思维的批判性是在深刻性基础上发展起来的思维品质。
小学数学思维的批判性,在概括过程中表现为善于精细地估计数学材料,准确选择推理条件;善于从正反 两方面思考推理过程,并能及时调整和校正。在推理过程中表现为善于从不同角度、正反两方面去理解概念, 区分相近概念;善于区别不同的运算法则、定律、性质及其适用的条件;善于发现并指出理解过程中可能出现的错误倾向,排除错误的干扰。在运算过程中表现为解决数学问题时善于排除无关因素的影响;善于进行辩证 地思索与分析,自觉检查思维过程,自我控制和调整思维方向,对解答结果能自觉作出估计和检验。在维理效 果上表现为推断、估计、自学以及对结论与推理过程进行评价的能力较强。
怎样培养和训练学生科学思维的批判性?
在掌握知识的过程中,教师要鼓励学生独立思考,发表自己的见解,形成“自由争辩”的学风。小学生往往受思维定势的影响,盲目随从,这不利于增强思维的批判性。为克服学生的盲从心理,教师有时可故意制造 一些错误,让学生去发现、评价。如教学三角形面积,出示左图,要求学生根据图中数据用两种方法求图形面 积(单位:厘米)。学生计算后发现,两组相对应的底和高求出的面积不相等。这样设计,在审题 时即对题目条件的可靠性进行论证,无疑培养了学生思维的批判性。
在运用知识解决数学问题的过程中,教师应着力培养学生“自我反省”的习惯。由于学生自我意识的发展 还不成熟,往往忽视自己的内部心理活动,对自己思维的破绽、错误不易注意。因此,在组织练习的过程中, 要经常引导学生反省自己的思维,自觉地表述思维过程,自觉地加以检验。
数学思维的敏捷性是指思维过程的简缩性和快速性。具有这一思维品质的人处理问题和解决问题时能适应 紧急的情况,迅速作出正确判断。在数学学习中,具有这一品质的学生能缩短运算环节和推理过程,“直接” 得到结果。克鲁捷茨基的研究表明,推理的缩短取决于概括,“能‘立即’进行概括的学生,也能‘立即’进 行推理的缩短。”
小学生数学思维的敏捷性,在概括过程中表现为善于快速地概括出数、式、形和数量关系中的数学特征、规律以及相应的解题技巧。在理解过程中表现为善于迅速地抓住数学问题的实质,熟练地进行等价变换。
培养和训练学生思维的敏捷性,在掌握知识的过程中,要注意抓基础促迁移,于简明的结构中包含较大的知识容量,把小学数学中的基本概念和基本原理放在教材的中心地位,作为教材的基本结构,并充分发挥这种知识结构所具有的知识之间的联结和转换功能。例如,以“两商之差”数量关系为基本结构的应用题,抓住a/ b-a/c=f这一结构形式,就可把以下具有可逆关系的12种题型统一在这个关系之中。
(1)原计划30天生产360台机器,实际20天完成。实际每天比原计划多生产多少台?(360/20-360/30=f)
(2)生产360台机器,原计划每天生产12台,实际每天生产18台。实际可提前几天?(360/12-360/18=f)
(3)原计划30天生产360台机器,实际每天多生产6台,实际多少天完成?(360/b-360/30=6)
(4)生产360台机器,实际每天生产18台,结果提前10天完成。原计划每天生产几台?(360/b-360/18=10)
(5)生产360台机器,实际20天完成,每天比原计划多生产6台,原计划多少天完成?(360/20-360/c=6)
(6)生产360台机器,原计划每天生产12台,实际提前10天完成,实际每天生产几台?(360/12-360/c=10)
(7)生产一批机器,原计划30天完成,实际20天完成。实际每天比原计划多生产6台,这批机器有多少台? (a/20-a/30=6)
(8)生产一批机器,原计划每天生产12台,实际每天生产18台,结果提前10天完成,这批机器有多少台?( a/12-a/18=10)
(9)生产360台机器,原计划完成的时间是实际的1.5倍,实际每天比原计划多生产6台,实际多少天完成? (360/b-360/1.5b=6)
(10)生产360台机器,实际每天生产的是原计划的1.5倍,实际提前6天完成。原计划每天生产多少台?(36 0/b-360/1.5b=6)
(11)生产360台机器,实际完成的天数是原计划的2/3,实际每天比原计划多生产6台,原计划多少天完成? [360/(2c/3)-360/c=6]
(12)要生产360台机器,原计划每天生产的是实际的2/3,实际提前10天完成,实际每天生产多少台?[360 /(2c/3)-360/c=10]
这是一种结构的方法。这种方法高于用单纯分析和说明数量关系的解释方法。其本质是从相互联系相互作 用的内在规律上揭示数量关系。而且研究数量关系的结构形式,可以运用迁移的规律解决同构异素问题。某些 应用题尽管在具体内容上不同,但实际上具有相似的结构形式,这就是同构异素问题。教学时可以使形式超脱 内容,把不同题材中共同的结构形式分离出来,进一步抽象化、符号化,只研究结构形式之间的关系。一般来说,概括程度越高,迁移量也就越大。小学数学中按照抓基础、促迁移、简结构、大容量的原则来组织教学内容,有利于培养学生数学思维的敏捷性。