论文部分内容阅读
本文讨论了一类具p-Laplacian算子型奇异边值问题(φp(x))'+a(t)f(x(t))=0,x(0)-βx'(0)=0,x(1)+δx'(1)=0多重正解的存在性,其中φp(x)=|x|-2x,p>1.通过使用不动点指数定理,在适当的条件下,建立了这类边值问题存在多重正解的充分条件.这些结果能被用来研究椭圆边值问题多重径向对称解的存在性.