论文部分内容阅读
研究在多目标优化进化算法中引入强选择压力机制,以促使搜索群体在有效保证多样性的前提下向Pareto最优前沿迅速收敛,并引入空间超体积测度.针对当前空间超体积测度计算代价高的问题,提出了一种基于空间切片的快速空间超体积贡献计算方法FH.基于该方法,发展出一种基于快速计算空间超体积贡献机制的多目标进化算法(FH—MOEA),并应用于解决复杂的多目标优化问题.用一组测试问题对算法性能进行检验,实验结果表明,该算法在收敛性和分布性两方面均比著名的NSGA-Ⅱ算法有显著提高.