论文部分内容阅读
The microstructures of Na2Si2O5 from room temperature up to 1773 K are studied by high-temperature Paman spectroscopy. Deconvolutions of complex Raman spectra of crystal and amorphous states (glass and melt) are described. The results show that the temperature-dependent Raman spectra clearly indicate phase transition.The relative abundance of various kinds of SiO4 tetrahedrons (each Si binding to different numbers of bridging oxygens) can be qualitatively and quantitatively resolved as to be varied obviously with different temperatures.This shows that high-temperature Raman spectroscopy provides a useful tool for microstructure research under high temperature and helps to explain the properties of silicate glasses and melts.