论文部分内容阅读
隐马尔科夫模型(HMM)对序列数据有很强的建模能力,在语音和手写识别中都得到了广泛的应用。利用HMM研究蒙古文手写识别,首先需要解决的问题是手写文字的序列化。从蒙古文的构词和书写特点看,蒙古文由多个字素从上到下串联构成。选择字素集合和词的字素分割是手写识别的基础,也是影响识别效果的关键因素。该文根据蒙古文音节和编码知识确定了蒙古文字母集合,共包括1 171个字母。通过相关性处理、HMM排序筛选等手段得到长字素集合,共包括378个字素。对长字素经过人工分解,获得了50个短字素。最后利用两层映射给出了词