论文部分内容阅读
当全球导航卫星系统(GNSS)失效时,微硅机械(MEMS)惯性测量单元(IMU)与GNSS组合而成的导航系统性能会下降。针对于陆地车辆的导航应用,建立了一个联邦卡尔曼滤波器,四元数是其中一个局部滤波器的部分待估计状态。四元数所得到推算的沿车辆机体坐标系的加速度约束扩展了滤波器的观测量。车载试验表明,与传统滤波算法相比,使用该算法可使三维位置导航精度在GNSS信号失效30 s时提高25%,姿态和速度精度也相应的提高。
When the global navigation satellite system (GNSS) fails, the performance of the navigation system combined with the MEMS Inertial Measurement Unit (IMU) and GNSS will be reduced. For navigation applications on land vehicles, a federal Kalman filter is built, which is part of the estimated state of one of the local filters. The quaternion derived acceleration constraints along the vehicle’s body coordinate system expand the filter’s observations. Vehicle tests show that, compared with the traditional filtering algorithm, the algorithm can improve the accuracy of three-dimensional position navigation when the GNSS signal fails for 30 s by 25% and the attitude and speed accuracy increase accordingly.