论文部分内容阅读
A356 aluminum alloys reinforced with carbon nano-tubes (CNTs) were produced by stir casting and compocasting routes and their microstructural characteristics and hardness were examined.In order to alleviate the problems associated with poor wettability, agglomeration and gravity segregation of CNTs in the melt, CNTs were introduced into the melts by injection of CNT deposited aluminum particles instead of raw CNTs.Aluminum particles with mean diameters of less than 100 μm were first deposited by CNTs using Ni-P electroless plating technique and then injected into the melt agitated by a mechanical stirrer.The slurry was subsequently cast at temperatures corresponding to full liquid as well as 0.15 and 0.30 solid fractions.The results show that addition of CNTs to A356 matrix can significantly refine both full liquid and semi-solid cast microstructures.Hardness of the samples is also significantly increased by addition of CNTs and A356-CNT composite cast at 0.3 solid fraction produces the highest hardness.
A356 aluminum alloys reinforced with carbon nano-tubes (CNTs) were produced by stir casting and compocasting routes and their microstructural characteristics and hardness were examined. In order to alleviate the problems associated with poor wettability, agglomeration and gravity segregation of CNTs in the melt, CNTs were introduced into the melts by injection of CNT deposited aluminum particles instead of raw CNTs. Aluminum particles with mean diameters of less than 100 μm were first deposited by CNTs using Ni-P electroless plating technique and then injected into the melt agitated by a mechanical stirrer. The slurry was subsequently cast at temperatures corresponding to full liquid as well as 0.15 and 0.30 solid fractions. The results show that addition of CNTs to A356 matrix can significantly refine both both liquid and semi-solid cast microstructures. Hardness of the samples is also significantly increased by addition of CNTs and A356-CNT composite cast at 0.3 solid fraction produces t he highest hardness.