【摘 要】
:
甘油是生物柴油生产过程中生成的副产物,随着生物柴油产量的快速增长,甘油的量也迅速增加.据估计,到2020年甘油的产量将比需求量高出6倍.因此,将过剩的甘油转化为其它更有价
【机 构】
:
浙江大学化学系生物质化工教育部重点实验室,浙江大学化学系化学前瞻技术研究中心
【基金项目】
:
国家自然科学基金(21773206,21473155),浙江省自然科学基金(L12B03001).
论文部分内容阅读
甘油是生物柴油生产过程中生成的副产物,随着生物柴油产量的快速增长,甘油的量也迅速增加.据估计,到2020年甘油的产量将比需求量高出6倍.因此,将过剩的甘油转化为其它更有价值的化学品具有重要意义.在已经发表的文献中,各种碳材料负载的Pt催化剂被广泛应用于液相中甘油的选择性氧化.但是,由于Pt纳米颗粒与碳载体之间相互作用较弱,因此Pt纳米颗粒易团聚和流失,而且Pt的过度氧化和有机羧酸的强吸附也导致Pt催化剂失活.最近的研究表明,采用含氮的碳载体可以增强Pt与载体间的相互作用,这种载体还有可能将电子转移给Pt,
其他文献
丙烯作为一种重要的石油化工基础原料,传统上是从石脑油蒸汽裂解或催化裂化过程中作为副产物生产的.随着原油的枯竭和页岩气开发技术的成熟,通过乙烷蒸汽裂解制备乙烯更具吸
伯胺等含氮化合物是最重要的化工中间体之一,被广泛应用于聚合物、医药、农药、染料和表面活性剂等产品的生产.当前,商业化伯胺主要通过卤代烃或环氧化合物直接胺化以及腈类
挥发性有机化合物(VOCs)是全球大气污染物的主要来源,近年来已造成严重的环境问题.催化氧化是一种有效的、经济可行的VOCs去除技术,其研究的关键在于开发高效、稳定的催化剂.
随着现代化学工业的发展,能源短缺和环境污染成为当下所面临的两大严峻问题.酸催化是化学工业中生产各种燃料和化学品的关键转化技术之一,发展基于固体酸的高效、环境友好催
作为便携式电子设备的动力源,直接甲酸燃料电池(DFAFC)具有燃料跨界范围小、电动势大、甲酸无毒、低温下功率密度大等优点,因而引起了人们的极大兴趣.DFAFC商业化的主要挑战
光催化分解水制氢和还原CO2是太阳能利用领域的研究热点,对清洁能源的转化具有重要意义.石墨相氮化碳(CN)作为一种非金属半导体,是一种非常有开发潜力的光催化材料.然而限于
近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、
随着生物发酵技术的进步和化学转化方法的发展,全球乙醇产量迅速增加.然而,乙醇存在能量密度低、吸水、对发动机腐蚀性高等缺点,其在汽油中的添加量有限,一般低于15%,这严重
光催化作为一种环境友好型、低能耗的技术,在环境净化等领域倍受关注.传统光催化剂,如TiO2,ZnO,V2O5和WO3等具有较高的光敏性,其价格低廉,自然无毒,常用于光电反应的应用当中
作为温室效应的主要气体CO2浓度持续上升,已经成为全球环境问题.将CO2光催化还原成可再生能源不仅可以解决CO2带来的温室效应,而且可以将太阳能转化为燃料物质而取代传统意义