论文部分内容阅读
空间信息处理和地理信息系统等领域的数据管理涉及到海量、高维空间数据对象的处理。本文针对传统数据索引结构在处理这类空间数据时所存在的内存使用过大、I/O消耗过多等问题,通过改进选择查询的代价模型,给出了基于PQR-tree的查询和代价模型,以提高空间数据查询的性能。提出了基于PQR-tree的三阶段并行查询的方法,分别在任务创建、分配、执行阶段进行优化。提出在任务创建和任务分配阶段应用于空间查询中过滤和精炼阶段的有效算法。测试表明,本文算法在处理各种不同分布类型数据集过程中有效降低了空间数据处理对时间