论文部分内容阅读
混合高斯模型在描述数据方面应用较多,但它易受离群点的影响,其参数的极大似然估计不是稳健估计。混合t-分布模型由于其重尾分布的特性,相对于混合高斯分布,在分析重尾数据上更具稳健性。文章首先研究一元混合t-分布模型,利用标准EM算法给出了该模型参数极大似然估计的迭代步骤,并分别在三类模拟数据下与混合高斯模型进行了对比分析,验证了该模型的有效性以及在拟合重尾数据上的优势。算法初始化采用k-means方法。