【摘 要】
:
人工智能的飞速发展对高性能计算提出了更高的要求,异构计算环境下任务调度问题一直是高性能计算中的关键问题.本文提出一种基于优先队列划分的调度算法(PQDSA),该算法根据DA
【机 构】
:
湖南工业大学 计算机学院,湖南 株洲,412007湖南大学 信息科学与工程学院,长沙,410082;
论文部分内容阅读
人工智能的飞速发展对高性能计算提出了更高的要求,异构计算环境下任务调度问题一直是高性能计算中的关键问题.本文提出一种基于优先队列划分的调度算法(PQDSA),该算法根据DAG(有向无循环图)任务集的入口节点数量确定优先队列数,通过任务的通信开销和计算开销划分任务队列,进而将关键节点任务分配给合适的队列,以产生效果较佳的任务调度队列,从而提高任务间的并行性,降低任务集的完工时间.与此同时,进一步基于插入策略将任务调度到处理器上,使任务调度更加高效地执行.PQDSA算法可以减少任务间的时间消耗,提高处理器的调度效率.通过与两个经典算法的性能对比,实验结果表明本文提出的PQDSA算法在任务完工时间和调度效率方面都要明显优于对比的算法.
其他文献
在自然语言处理领域,句子表示方法能捕捉文本的不同信息,如卷积神经网络捕捉短语信息,循环神经网络捕捉时序信息等.自我注意力机制能够描述任意词对之间的重要程度,但是缺少
针对粒子群算法(Particle Swarm Optimization,PSO)容易陷入局部最优、收敛速度过慢、精度低等问题,提出一种新的变异策略,对全局最优粒子进行逐维的重心反向学习变异.逐维变
MOEA/D具有良好的收敛性、均匀的分布性、求解效率高等优点,普遍应用于求解多目标优化问题.然而对于Pareto前端复杂的多目标优化问题,预先设定均匀的权重向量并不能够维持Par
视频码率自适应是提高视频服务质量的一种有效方法.现有视频码率自适应算法大多都试图将一套相对固定的模型规则应用于所有用户,无法确保所有用户都拥有良好的QoE.针对上述问
具有间隙约束条件模式匹配问题是序列模式挖掘问题的基础与核心.无重叠模式匹配是其中的一种方法,当前研究是在间隙为正的精确模式匹配,为了进一步增加匹配的灵活性,本文探索
自动文本摘要技术是一种能从海量文本中获取重要信息的方法,它可以缓解大数据时代信息过载的问题.传统基于编码-解码自动摘要模型生成的摘要易出现句内重复、语义无关等现象,
兴趣点(POI)的签到数据体现了用户的偏好和兴趣点的分布特征,这在兴趣点推荐领域有极为重要的价值.为了缓解数据稀疏造成的推荐不准确等问题,本文提出了融合时间序列的POI动态推荐算法,结合用户与用户之间的关系、兴趣点位置以及流行度信息等.首先划分时间序列,得到时间因子的相似度;其次时间序列融入到基于用户的协同过滤算法,再根据时间的连续性特征得到基于用户的预测评分,然后将地理影响因子与基于时间的流行度
针对云计算环境下的多目标任务调度问题,提出一种新的基于Q学习的多目标优化任务调度算法(Multi-objective Task Scheduling Algorithm based on Q-learning,QMTS).该算法的
K中心选址作为一种经典问题,学者们提出了很多好的解决方法,但是对于加权距离连续K中心选址问题的研究一直没有很好的进展.本文针对连续K中心选址问题,以最小加权距离作为优
多语言文本的情感分析是情感分析领域的重要问题之一,而现有的情感分析方法着重于对单语言文本的研究.本文针对中英混合文本提出了一种细粒度情感分析模型,通过基于大规模语