【摘 要】
:
为提高疼痛表情识别的准确性,提出一种融合约束局部神经域模型(CLNF)和贝叶斯网络(BN)建模的疼痛表情识别方法。该方法首先通过CLNF模型获取疼痛表情的关键特征点,在此基础上进一步得到携带大量疼痛信息的面部活动单元(AU),对AU加标签构成样本数据集,并根据定性专家经验得到BN条件概率之间的约束集合,随后利用变权重方法将样本数据集与约束扩展参数集进行融合完成BN模型的参数估算,最后利用BN推理方
论文部分内容阅读
为提高疼痛表情识别的准确性,提出一种融合约束局部神经域模型(CLNF)和贝叶斯网络(BN)建模的疼痛表情识别方法。该方法首先通过CLNF模型获取疼痛表情的关键特征点,在此基础上进一步得到携带大量疼痛信息的面部活动单元(AU),对AU加标签构成样本数据集,并根据定性专家经验得到BN条件概率之间的约束集合,随后利用变权重方法将样本数据集与约束扩展参数集进行融合完成BN模型的参数估算,最后利用BN推理方法实现疼痛表情的最终识别。实验结果表明,该方法与其他方法相比,具有更高的识别精度,可有效提高疼痛表情的识
其他文献
【目的】运用菌根技术改良石漠化土壤性状,已成为石漠化地区植被与土壤恢复的重要生物学途径。揭示丛枝菌根(AM)真菌与植物共生驱动下石漠化土壤碳库及养分状况的变化,探明石漠化土壤易氧化碳(ROC)对碳库及土壤养分变化的响应过程及机制,为石漠化土壤的微生物修复及提高石漠化治理效率提供参考。【方法】采集云南昆明寻甸石漠化土壤,以尼泊尔桤木(Alnus nepalensis)为寄主植物,分别接种摩西斗管囊霉
针对安检X光图像检测中的违禁品尺度差异问题,对Faster RCNN网络进行改进,提出一种基于多通道区域建议网络(Muiti Channel Region Proposal Network,MCRPN)。首先,考虑到不同层卷积特征在视觉语义上的互补性,进行多层特征提取,融合VGG16高层较丰富的语义特征和低层较浅的边缘特征;其次,修改多通道RPN中的锚框参数,将生成的多尺度候选目标区域分别映射到对
从图像中获取目标物体的6D位姿信息在机器人操作和虚拟现实等领域有着广泛的应用,然而基于深度学习的位姿估计方法在训练模型时通常需要大量的训练数据集来提高模型的泛化能力,一般的数据采集方法存在收集成本高同时缺乏3D空间位置信息等问题.本文提出了一种低质量渲染图像的目标物体6D姿态估计网络框架.在该网络中,特征提取部分以单张RGB图像作为输入,用残差网络提取输入图像特征;位姿估计部分的目标物体分类流对目
目前深度学习方法应用于图分类模型的重点集中在将卷积神经网络迁移到图数据领域,包括重定义卷积层和池化层。卷积操作泛化到图数据上是有效的方法,但无论是卷积还是池化都存在较大的改进空间,尤其是在提取网络拓扑结构信息方面。提出一种基于重构误差的同构图分类模型,一方面利用改进的同构图卷积网络WaveGIC增强提取拓扑结构信息能力;另一方面利用多重注意力机制表征全图,使得模型能够关注关键节点信息。由于网络加深
针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映射关系,对传统CycleGAN的损失函数进行了改进,提出了基于图像强边缘结构相似度(Strong edge and
针对现有行人再识别算法在处理图像分辨率低、光照差异、姿态和视角多样等情况时,准确率低的问题,提出了基于空间注意力和纹理特征增强的多任务行人再识别算法。算法设计的空间注意力模块更注重与行人属性相关的潜在图像区域,融入属性识别网络,实现属性特征的挖掘;提出的行人再识别网络的纹理特征增强模块通过融合不同空间级别所对应的全局和局部特征,减弱了光照、遮挡等对行人再识别的干扰;最后通过多任务加权损失函数将属性
通常在目标跟踪任务中需要跟踪的目标物体具有任意性,同时目标周围可能有相似的干扰物体,这常常导致预训练网络提取的目标特征并不完全适用于当前需要跟踪的目标物体。针对以上问题,在Siamese孪生网络目标跟踪框架下,本文提出一种新型的基于梯度导向的通道选择目标跟踪算法。首先从预训练网络提取待跟踪目标特征,利用本文提出的开关-惩罚损失函数对背景中的相似性干扰物体施加惩罚操作,以排除相似物体对跟踪目标的干扰
高光谱图像变化检测可提供地球表面的时间维变化信息,对城乡规划和管理至关重要。因具有较高的光谱分辨率,高光谱图像常被用于检测更精细的变化。针对高光谱变化检测的问题,本文提出一种基于协同稀疏与非局部低秩张量的高光谱图像变化检测方法。该方法首先求得前后时间点的高光谱差分图像,再根据差分图像中图像块的非局部分布特点,提取不同的非局部张量簇。然后基于协同稀疏正则化和低秩正则化建立协同稀疏与非局部低秩张量变化
为了实现养殖场环境下无接触、高精度的奶牛个体有效识别,针对SSD(Single Shot MultiBox Detector, SSD)算法识别准确率不高的问题,提出一种基于浅层特征模块的改进SSD(Shallow Feature Module SSD, SFM-SSD)算法。首先,将原始SSD算法的主干网络由VGG16替换为MobileNetV2,以降低网络的运算量,改善检测的实时性;其次,针对
对我国亚热带地区发育于花岗岩之上的一个黄红壤剖面进行了系统的环境磁学测量,对土壤样品的磁化率、等温剩磁、磁滞回线等常温磁学参数进行测量,对代表性样品进行热磁分析,并结合色度、常量地球化学元素和漫反射光谱参数,探讨亚热带黄红壤的磁性特征,以及在相对湿冷的气候条件下,黄红壤中的磁性矿物具有怎样的转化规律。结果表明:亚热带黄红壤中强磁性矿物为亚铁磁性的磁铁矿、磁赤铁矿,弱磁性矿物为反铁磁性的赤铁矿、针铁