论文部分内容阅读
本文提出了一种基于码本的说话人自适应方法.它可以将变换方法和Bayes估计法这两大类说话人自适应方法的优点有机的结合起来,既能实现快速的说话人自适应,还具有良好的一致渐进性.自适应过程可分为两个阶段:在第一阶段,用由大量参考说话人的语音码本构成的线性组合来逼近用户的语音码本.此时只需要很少的自适应训练数据就可以用基于Rosen梯度投影法的优化算法计算出线性组合中各码本的最佳权值.在第二阶段,码本的最佳线性组合被用作用户码本的先验估计值.随着更多自适应训练数据的获得,系统对用户码本进一步进行Bayes估计,