论文部分内容阅读
Knowledge of evapotranspiration(ET)and energy partitioning is useful for optimizing water manage-ment,especially in areas where water is scarce.A study was undertaken in a furrow-irrigated vineyard(2015)and a drip-irrigated vineyard(2017)in an arid region of north-west China to compare vineyard ET and energy partition-ing and their responses to soil water content(SWC)and leaf area index(LAI).ET and soil evaporation(E)and transpiration(T)were determined using eddy covariance,microlysimeters,and sap flow.Seasonal average E/ET,T/ET,crop coefficient(Kc),evaporation coefficient(Ke),and basal crop coefficient(Kcb)were 0.50,0.50,0.67,0.35,and 0.29,respectively,in the furrow-irrigated vineyard and 0.42,0.58,0.57,0.29,and 0.43 in the drip-irrigated vineyard.The seasonal average partitioning of net radiation(Rn)into the latent heat flux(LE),sensible heat flux(H)and soil heat flux(G)(LE/Rn,H/Rn,and G/Rn),evaporative fraction(EF)and Bowen ratio(β)were 0.57,0.26,0.17,0.69 and 0.63,respectively,in the furrow-irrigated vineyard and 0.46,0.36,0.17,0.57 and 0.97 in the drip-irrigated vineyard.The LE/Rn,H/Rn,EF,and β were linearly correlated with LAI.The E,Kc,Ke,E/ET,LE/Rn,LEs/Rn(ratio of LE by soil E to Rn),H/Rn,EF and β were closely correlated with topsoil SWC(10 cm depth).Responses of ET and energy partitioning to the LAI and SWC differed under the two irrigation methods.Drip irrigation reduced seasonal average E/ET and increased average T/ET.From the perspective of energy partitioning,seasonal average H/Rn increased whereas LE/Rn,especially LEs/Rn,decreased.Compared with furrow irrigation,drip irrigation decreased the proportion of unproductive water consumption thereby contributing to enhanced water use efficiency and accumulation of dry matter.