基于神经元协同激励的稳定时间可控情景记忆

来源 :系统仿真学报 | 被引量 : 3次 | 上传用户:xinxinde1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
情景记忆(Episodic memory)被认为是学习与记忆、感觉信号的加工和处理等认知功能的一个重要表现。在大脑的运行过程中,模式的稳定时间是可变化的。为了更好的模仿真实大脑在情景记忆过程中的状态,提出了一种基于神经元协同激励的不同模式的稳定时间不同的情景记忆模型。在本模型当中,模式和输入模式之间的相似性控制模式的稳定时间,相似度和模式稳定时间成正相关。同时,神经元协同激励情景记忆存储容量比传统的情景记忆模型得到明显的提高,并且存储容量和网络规模成指数比例关系。
其他文献
将遗传算法和神经网络结合应用于乳腺癌细胞分类,首先利用遗传算法随机提取训练集的属性特征,然后用提取特征后的训练集训练神经网络,最后得到必要的特征子集优化网络结构。仿真实验结果表明,遗传神经网络不仅可以优化神经网络的权值和阈值,还能有效地找出线性可分离特征子集,从而达到降低数据维数并提高分类精度的目的。
针对一类含未知常参数向量的高阶随机非线性系统的依概率输出跟踪控制问题,提出了一种非光滑状态反馈动态面控制器设计方法.利用自适应技术,所设计的控制器能够处理未知常参
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
针对城市交通系统的动态性和不确定性,提出了基于Q-学习和粒子群算法相位差优化算法,对区域交通动态实时控制进行了研究。根据不同的交通流情况确定不同的区域控制目标函数,将Q-学习的奖惩机制引入粒子群算法的选优过程中,通过改进的粒子群算法实时优化区域控制策略。编制该控制方法的仿真程序,应用AIMSUN仿真软件验证算法的控制效果。结果表明,该方法对不同交通量下可保持较高的控制效率,控制效果明显优于感应控制
将微粒群算法用于文化算法种群空间的优化,形成文化微粒群算法,并用常用测试函数检验该算法的性能;结果表明,文化微粒群算法具有比基本微粒群算法更好的优化性能。然后,将文化微粒群算法用于Elman网络连接权值和阈值的寻优,构成文化微粒群Elman网络,并将其应用于加氢裂化航煤干点软测量建模。结果表明,此模型精度高,应用前景广阔。
针对微生物制药的间歇生产过程中缓变故障难于监测的问题,提出了多向核熵成分分析(multi-way kernel entropy component analysis,MKECA)过程监测的新方法,克服了传统多向核
针对粒子群算法在多峰、高维函数的全局优化中易陷入局部极值的问题,在分析算法早熟收敛原因的基础上,提出一种基于信息扩散和多样性反馈机制的双子群粒子群优化算法。算法将粒子群划分为两组搜索方向相反的主、辅子群协同进化,通过引入信息扩散函数,根据不同粒子的位置及相应适应值与当前群体最佳位置和最佳适应值的关系,控制粒子变尺度向群体当前最佳位置移动,并基于多样性反馈机制动态调节惯性权重和分配主、辅子群的粒子数
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
为有效求解约束优化问题,提出一种改进粒子群算法(ICPSO)。该算法在处理约束时不引入惩罚因子,而是根据目标函数值和粒子违背约束条件程度。并根据种群中个体的可行性,采用三种不同的交叉操作对粒子自身最优位置进行操作,同时对全局最优粒子采取变异操作以产生新的学习样本,引导种群的飞行,提升种群跳出局部最优解的能力。最后,引入一种混合粒子速度更新策略,提升种群向最优解飞行的概率。标准测试函数的仿真结果表明
针对批次过程故障检测建模样本数据量大、重复性强、噪声干扰多、数据利用率低等问题,提出了一种基于在线升级主样本建模(PSM)的kNN故障检测方法.首先,通过对原始数据样本间