论文部分内容阅读
针对传统信息推荐方式精度偏低的问题,引入用户画像作为推荐基础,在深入研究文本分类和用户行为后,提出一种基于动态用户画像的推荐方法.该方法通过动态分析用户历史数据,预测用户的兴趣变化趋势,从而实现动态推荐.离线实验证明,该方法在预测用户偏好变化方面具有一定优势,相较于传统的基于标签的信息推荐,提高了推荐精度.