论文部分内容阅读
考虑水分升华、凝华、气液和固液相变,以温度和水蒸气分压力为驱动势建立了气、液、固三相水分共存的多层墙体热湿耦合传递模型.构建了1面500mm(长)×450mm(高)×240mm(厚)试验墙体,利用恒温恒湿箱试验测试了箱体温度范围为常温~-33.94℃时墙体内部温度和平衡相对湿度的变化,分析了水分固液相变过程的特征,并对热湿耦合传递模型数值模拟计算结果的正确性进行了验证.结果表明:试验墙体内部温度和水蒸气分压力数值模拟计算结果和实测结果变化趋势相同,具有良好的一致性,各点温度数值模拟计算结果的最大相对误差为1.68%,平均相对误差为0.44%;水蒸气分压力数值模拟计算结果的最大相对误差为27.92%,平均相对误差为13.50%.该模型数值模拟计算结果能够满足一般工程领域的精度要求,可应用于三相水分共存的多层墙体热湿耦合传递过程数值模拟研究.
Considering the sublimation, desublimation, gas-liquid and solid-liquid phase transition, the thermo-hygrothermal coupling transfer model of multi-wall with gas, liquid and solid three-phase water is established by driving the temperature and water vapor partial pressure. Surface 500mm (length) × 450mm (height) × 240mm (thickness) test wall, the use of constant temperature and humidity box test the box temperature range of room temperature to -33.94 ℃ when the internal wall temperature and equilibrium relative humidity changes, analysis The characteristics of the process of solid-liquid phase transition in water are validated, and the correctness of the numerical simulation results of the heat-moisture coupling transfer model is verified. The results show that the numerical simulation results of the temperature and water vapor partial pressure in the test wall and the trend of the measured results The maximum relative error is 1.68% and the average relative error is 0.44%. The maximum relative error of the calculation results of partial pressure of water vapor is 27.92%, the average relative error is 13.50% .The numerical simulation results of the model can meet the precision requirements of general engineering field, and can be applied to numerical simulation of heat and moisture coupling transfer process of multi-wall with three-phase water coexistence.