Comparison Study on the Semiconductive and Dissolution Behaviour of 316L and Alloy 625 in Hydrochlor

来源 :金属学报(英文版) | 被引量 : 0次 | 上传用户:fsb820101
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The corrosion behaviour of 316L and Alloy 625 was investigated using cyclic polarization,electrochemical impedance spectroscopy,X-ray photoelectron spectroscopy,Auger electron spectroscopy and induced coupled plasma-optical emission spectrometer.The results indicated that Alloy 625 showed better corrosion resistance than 316L and the prolonging immersion time could enhance corrosion resistance of the two alloys.The passive film formed on the surface of 316L exhibited an electronic structure of p-p heterojunction,with Fe3O4 and Cr2O3 enriched in the outer and inner layers,respectively.However,Alloy 625 presented the electronic structure of n-p heterojunction dominated by the outer Fe2O3/NiFe2O4 and inner Cr2O3.This resulted in the opposite semiconductive properties of the passive films formed on the two materials.In the acid solutions,Fe and Mo suffered from selective dissolution while Cr and Ni were relatively stable.The corrosion rates were mainly dominated by the dissolution of iron.Alloy 625 presented better corrosion resistance than 316L due to the obviously lower content of Fe and the higher content of Cr and Ni in the passive film.The continuously selective dissolution of iron resulted in the increase in Cr/Fe ratio in the passive film,which was responsible for the enhancement in corrosion resistance.
其他文献
Cu pillar bump offers a number of advantages for flip chip packaging,compared to the conventional solder bump.However,due to its rigidity structure,Cu pillar bump introduces a lot of stress to the chip,which causes the failure of packaging structures,espe
Microalloying is an effective method to improve the comprehensive properties of copper alloys.The effects of magnesium on the microstructure,mechanical properties and anti-stress relaxation properties of CuNiSi alloys have been investigated.Results demons
Structural metallic materials with excellent functional performance and lightweight features have always been the goal of material scientists\' pursuit.In this work,laminated metal composites of different thicknesses (less than 0.4 mm) composed of struc
Friction stir lap welding was conducted on 2 mm + 2 mm sheets of aluminum alloy 2A12-T4.The plunge depth (PLD) was designed as 2.45-2.58 mm,which was varied in submillimeters as 2.45,2.50,2.53,2.55,and 2.58 mm,and the axial force was recorded in the weldi
The effects of tempering temperatures on the microstructure and mechanical properties of the simulated coarse-grain heataffected zone (CGHAZ) and inter-critical heat-affected zone (ICHAZ) were investigated for a high-strength-high-toughness combination ma
Amorphous Al2O3-reinforced Al composite (am-Al2O3/Al) compacted from ultrafine Al powders for high-temperature usages confronts with drawbacks because crystallization of am-Al2O3 at high temperatures will result in serious strength loss.Aiming at this uns
A new Mg-2.2 wt% Zn alloy containing 1.8 wt% Ca and 0.5 wt% Mn has been developed and subjected to extrusion under different extrusion parameters.The finest (~ 0.48 μm) recrystallized grain structures,containing both nano-sized MgZn2 precipitates and αt-M
At room temperature,crystalline Mg-based alloys,including Mg2Ni,MgNi,REMg12 and La2Mg17,have been proved with weak electrochemical hydrogen storage performances.For improving their electrochemical property,the Mg is partially substituted by Ce in Mg-Ni-ba
In order to study the corrosion resistance of extruded magnesium alloys,the Mg-4Zn-2Gd-0.5Ca alloy was extruded at the speed of 0.01-0.1 mm/s with the temperature of 280-360 ℃ in present study.Hot extrusion results show that the volume fraction of precipi
AlCoCrFeNi is one of the most widely studied alloy systems in the high-entropy alloy (HEA) area due to the interesting microstructure and mechanical properties.In this study,the A1CoCrFeNi alloy was prepared using spark plasma sintering (SPS) with pre-all