Mn,Fe,Co掺杂GaAs电子结构与光学性质的第一性原理研究

来源 :原子与分子物理学报 | 被引量 : 0次 | 上传用户:chenglian_chen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用基于密度泛函理论的平面波超软赝势方法对本征GaAs以及3d过渡金属Mn、Fe、Co单掺杂GaAs晶体的电子结构及其光学性质进行理论计算以及对比研究.计算结果表明:能带结构中三种掺杂体系均引入新的能级,能带条数增多,导带底与价带底顶向深能级移动,带隙减小;费米能级附近出现了杂质能级,导致掺杂体系光子能量位于0时介电函数虚部便有所响应,掺杂体系相较于本征体系的静介电常数有所提升;Mn、Fe、Co三种掺杂体系相较于本征体系在红外以及远红外区域吸收系数得到了明显的提升,其中Fe掺杂GaAs的光催化特性最好.
其他文献
为了研究碱湖N2 O释放速率及其对盐度与pH的响应,选取内蒙古大克泊碱湖的五个沉积物样点,采用15 N同位素标记模拟实验,研究反硝化和厌氧氨氧化的速率、相对比例和气体产生情况,揭示高盐和高pH对碱湖氮移除的影响.发现大克泊湖潜在氮移除速率为0~16.06 n mol N mL-1 h-1,潜在反硝化速率为0~12.62 n mol N mL-1 h-1,潜在厌氧氨氧化速率为0~9.81 n mol N mL-1 h-1;当盐度34.00 g·L-1与pH 10.22时,厌氧氨氧化对氮移除贡献较大,达到43
NH3的催化分解一直是制备高纯度氢的有效途径之一,因此具有良好的催化活性的贵金属被广泛的应用于催化解离的研究中.然而,由于纯金属催化剂的利用效率低,增加催化成本.最近的研究发现单原子催化剂Ir1/MoS2以其突出的优势被认为是一种潜在的能替代现有贵金属催化剂的材料.本文采用密度泛函理论与周期性平板模型相结合的方法,研究了NH3在单原子催化剂Ir1/MoS2上的吸附与活化.结果表明:NH3的优势吸附位为Ir原子的顶位,构型为倾斜结构(atop),NH3与体系表面的金属Ir成键,吸附能达到1.63 eV,是化
在本工作中,甲烷水合物的生长动力学是通过甲醇、乙醇、乙二醇三种不同醇类抑制剂存在下的分子动力学模拟研究的.模拟结果发现,三种醇类都可作为甲烷水合物的抑制剂,醇类分子中的亲水性羟基极大地破坏了水合物笼的结构,并且羟基可以与局部的液态水分子形成氢键,从而增加了形成水合物笼型结构的难度,导致甲烷水合物的生长速率降低.对于甲醇分子,甲醇分子的亲水性羟基与水分子形成氢键从而破坏了水分子结构,而亲油性甲基对周围的水分子具有簇效应,两者都会降低水合物生长速率;对于乙二醇和乙醇分子,它们只含有羟基,特别是乙二醇分子含有两
利用调QNd:YAG 1064 nm激光器诱导产生锡等离子体,基于9条锡发射谱线,构建二维玻尔兹曼图,得到锡等离子体电子温度5063 K,利用洛伦兹函数拟合锡发射谱线Sn(I)228.66 nm,得到锡等离子体电子密度3.8×1017 cm-3,结果证实激光诱导的锡等离子体处于热力学平衡状态.
运用杂化密度泛函B3LYP方法,在6-31G?水平上优化得到了一种Mg12 B24团簇的笼状稳定结构,其IR最强吸收峰位于205.23 cm-1,Raman谱的最强峰位于242.63 cm-1.Mg12 B24团簇笼状结构中B原子主要是sp杂化轨道参与成键,Mg原子主要是s轨道参与成键.团簇中B原子层堆积了大量的电子,表明MgB2的超导作用主要发生在B原子层;B原子层电子存在较强的离域性,也为超导电性提供了条件;Mg原子起了提供电子的作用.
电离能下降的现象与等离子体的成分、电离分布、热力学、输运性质息息相关,其精确测量值对于整个实验的模型检验和方案设计都至关重要.本文考虑粒子数的涨落,对经典的Stewart和Pyatt的模型进行修正,并耦合进先前发展的等离子体模型.利用修正的模型对熊刚等人的实验进行了解释,发现当前模型所得结果要优于其他理论结果,与实验更加一致.
对非旋波近似下两量子比特与单模光场耦合系统进行了求解.在定态问题中精确计算了系统能谱与耦合强度g的关系,通过解析求解可以发现,系统能谱中总有一条能级始终为常数与耦合强度g无关.在动力学问题中,研究了初始时刻纠缠在Bell态的两个原子与单模真空态腔场耦合时量子纠缠的演化问题,讨论了纠缠的突然死亡现象.结果表明:量子纠缠的演化具有周期性,随着耦合强度g逐渐增大,纠缠周期T随之减小,第一次出现纠缠突然死亡的时间不断缩短;在耦合强度较小时,随着原子间偶极相互作用参数η的增大纠缠演化周期逐渐增加,并且不会出现纠缠突
采用密度泛函理论系统研究了硼烯-石墨烯异质结中缺陷态对体系电子结构特性的影响.发现缺陷态存在于石墨烯一侧时会破坏异质结结构;但缺陷态存在于硼烯一侧时异质结结构仍然会稳定存在,并且体系电子结构随缺陷态密度改变而发生明显变化:从无缺陷态时的金属特性变为多缺陷态时的半导体特性.常温下的分子动力学模拟进一步验证了相关体系的动力学稳定性.
采用基于密度泛函理论的第一性原理方法,计算和分析Ag(111)/Al(111)界面体系的能量与电子结构,讨论Ag中加入的Be、Mg、Al、Ca、Ni、Sn合金化元素对Ag/Al界面性质的影响.结果表明:Ni原子倾向于界面处的取代位置,而Be、Mg原子倾向于靠近界面处的取代位置,Al、Ca、Sn原子倾向于远离界面处的取代位置;合金元素Be、Mg、Al、Ca、Ni、Sn的加入均会使Ag/Al界面的稳定性降低,其中Ca元素的影响程度最大,分离功降低到0.923 J/m2,界面能增至0.703 J/m2;通过电子
针对双尺度结构表面疏油特性的优异性,采用分子动力学的方法建立油液流体正十六烷烃分子模型,研究双尺度结构壁面润湿性影响下的纳米通道内流体的流动特性,通过对通道壁面亲疏油性下的双尺度结构的构建,与光滑壁面和单尺度壁面进行比较来探究双尺度纳米通道表面结构影响下油液流体在纳米通道内密度分布、速度分布、速度滑移和滑移长度的影响.模拟结果表明:对于亲油通道壁面,双尺度结构壁面亲油性明显加强,主流区域流体密度、流体速度和速度滑移都减小,甚至出现负滑移;而对于疏油通道壁面,双尺度分层结构能加强壁面的疏油性,通道内壁面形成