论文部分内容阅读
Asymmetrical halo and dual-material gate structure are used in the sub-100 nm surrounding-gate metal-oxide-semiconductor field effect transistor (MOSFET) to improve the performance. Using three-region parabolic po-tential distribution and universal boundary condition, analytical surface potential and threshold voltage models of the novel MOSFET are developed based on the solution of Poissons equation. The performance of the MOS-FET is examined by the analytical models and the 3D numerical device simulator Davinci. It is shown that the novel MOSFET can suppress short channel effect and improve carrier transport efficiency. The derived analytical models agree well with Davinci.