Structural insights of catalytic intermediates in dialumene based CO2 capture:Evidences from theoret

来源 :中国化学快报(英文版) | 被引量 : 0次 | 上传用户:qiuzhizhedetiantang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
CO2 capture is considered as one of the most ideal strategies for solving the environmental issues and against global warming.Recently,experimental evidence has suggested that aluminum double bond(dialumene) species can capture CO2 and further convert it into value-added products.However,the catalytic application of these species is still in its infancy.Both the dynamics mechanism of CO2 fixation and the detailed structures of catalytic intermediates are not well understood.In this work,we investigate the structure dependent resonance Raman (RR) signals for different reaction intermediates.Ab-initio simulations of spontaneous resonance Raman (spRR) and time-domain stimulated resonance Raman (stRR) give spectral signatures correlated to the existence of different intermediates during the CO2-dialumene binding process.The unique Raman vibronic features contain rich structural information with high temporal resolution,enabling to monitor the transient catalytic intermediates under reaction conditions.Our work shows that RR can be used to monitor intermediates during the dialumene based CO2 capture reaction.The spectral features not only provide insight into the structural information of intermediate species,but also allow a deeper understanding of the dynamical details of this kind of catalytic process.
其他文献
Developing low toxicity and multifunctional theranostic nanoplatform is the key for precise cancer diagnosis and treatment.Herein,an inorganic-organic hybrid nanocomposite is designed by modifying zirconium dioxide (ZrO2) with polydopamine (PDA) followed
Supramolecular transformations of coordination cage or capsule have received much attention recently,which help elucidate this natural self-assembly behavior in biological systems.The current study describes the first supramolecular transformation of tita
Currently,architecting a rational and efficient nanoplatform combing with multi-therapeutic modalities is highly obligatory for advanced cancer treatment.In order to remedy the self-limiting hypoxic dilemma of photodynamic therapy (PDT),herein,a facile ph
We herein report a new lanthanide metal-organic framework (MOF) that exhibits excellent chemical stability,especially in the aqueous solution over a wide pH range from 1 to 14.In contrast to many reported lanthanide MOFs,this Tb-based MOF emits cyan fluor
Gold nanovesicles (GVs) with unique plasmonic property and large cavity hold great potential as a stimuli-responsive nanocarrier to deliver drugs for efficient tumor chemotherapy and other therapies synergistically.Herein,we developed doxorubicin-loaded g
Ion-in-conjugation (IIC) materials are emerging as an important class of organic electronic materials with wide applications in energy storage,resistive memories and gas sensors.Many IIC materials were designed and investigated,however the role of conjuga
Li-O2 batteries (LOBs) have been perceived as the most potential clean energy system for fast-growing electric vehicles by reason of their environmentally friendlier,high energy density and high reversibility.However,there are still some issues limiting t
Bi draws increasing attention as anode materials for lithium-ion batteries and sodium-ion batteries due to its unique layered crystal structure,which is in favor of achieving fast ionic diffusion kinetics during cycling.However,the dramatic volume expansi
In the crystal engineering area,it is important to clearly demonstrating the relationship of structure and certain functionality.Herein,we present the study of the relationship of structure with phosphorescent nature for two new room temperature phosphore
DNA methyltransferase (DNMT) and histone deacetylase (HDAC) are well recognized epigenetic targets for discovery of antitumor agents.In this study,we designed and synthesized a series of nucleoside base hydroxamic acid derivatives as DNMT and HDAC dual in