论文部分内容阅读
通过对基于粒子滤波算法的运动目标跟踪技术进行研究,并针对粒子滤波算法的退化现象做出了两方面的调整。第一,对粒子滤波的重采样阶段做出了改进,在粒子上添加一个微小的高斯干扰,使得重采样的粒子分布发生变化,同时使采样枯竭得到了抑制;第二,经过一段时间的跟踪后,将跟踪目标重新初始化,继续跟踪,使得跟踪结果更加完善。通过自适应调整跟踪目标的窗口,使其大小改变,背景中的颜色尽量没有与跟踪目标相同的颜色。实验结果表明,这种改进过的粒子滤波算法能够在复杂的情况下进行跟踪,并且跟踪性能优于Meanshift方法。