【摘 要】
:
通过化学降解聚丙烯(PP)、添加特殊处理的纳米驻极剂并复配粉体分散剂,“一步法”制备高效驻极PP熔喷专用料。借助扫描电子显微镜、高温凝胶色谱、自动滤料检测等测试方法,研究了PP熔喷专用料主要物性与熔喷布过滤性的影响因素。结果表明:该材料性能满足GB/T 30923—2014要求,且具有长效高过滤性,熔喷布工艺得到了优化。
【机 构】
:
陕西延长泾渭新材料科技产业园有限公司
论文部分内容阅读
通过化学降解聚丙烯(PP)、添加特殊处理的纳米驻极剂并复配粉体分散剂,“一步法”制备高效驻极PP熔喷专用料。借助扫描电子显微镜、高温凝胶色谱、自动滤料检测等测试方法,研究了PP熔喷专用料主要物性与熔喷布过滤性的影响因素。结果表明:该材料性能满足GB/T 30923—2014要求,且具有长效高过滤性,熔喷布工艺得到了优化。
其他文献
采用“二次开模”注射成型工艺制备微发泡聚酰胺6(PA6)材料,研究了不同延时时间对PA6材料发泡行为及力学性能的影响。结果表明:延时时间能有效控制微发泡PA6材料的发泡过程,较短的延时时间内,模具型腔压力下降较大,压力降速率较快,有利于聚合物泡孔成核速率的提高。随着延时时间增加,微发泡PA6材料的泡孔平均直径增大,泡孔密度减小,而其拉伸强度、弯曲强度和冲击强度变化不大。当无延时开模时,其泡孔结构较好,泡孔平均直径最小为53.9μm,泡孔密度最大为15.67×105个/cm3
随着国内高校相继成立针对本科生的、以大数据技术与应用专业人才培养为目的的大数据特色班,对专业核心课程《大数据处理与分析》教学内容的设计变得非常迫切。本文提出一种以大数据统计感知思想为切入点、以大数据随机样本划分模型为基础的课程设计方案,主要包括大数据存储处理、大数据预处理、大数据切分处理、大数据降维处理、大数据统计分析、大数据分类分析和大数据聚类分析七部分教学内容。同时,结合有针对性的应用案例将课程知识点与实际应用有机结合,在重视课程设计的理论性基础上,增强教学内容的实用性。
以20 Ah方形钛酸锂电池为研究对象,研究过充工况下电池单体的热失控特性,获取钛酸锂电池在100%SOC工况下的温度、电压及气体成分和含量的变化规律及参数.实验证明,钛酸锂电池
利用旋转流变仪和热失重分析仪对聚4-甲基-1-戊烯(PMP)的加工流变性和热稳定性进行了研究。结果表明:PMP的加工性能与均聚聚丙烯(PP)较为接近,但其熔点为236℃,其加工温度高于PP。PMP熔体为典型的假塑性流体,其非牛顿指数为0.2,对剪切速率敏感;同时PMP黏流活化能(83.00 kJ/mol)比PP的高,表现出比PP熔体更高的温度敏感性。PMP的热稳定性良好,可以顺利进行成型加工。
采用热致相分离法制备扩链聚对苯二甲酸乙二醇酯(PET)微孔膜,研究了三(环氧丙基)异氰尿酸酯(TGIC)用量及铸膜液N-甲基吡咯烷酮(NMP)初始浓度对PET微孔膜结构的影响。结果表明:随着TGIC用量增加,PET膜孔径减小,孔分布变得密集;TGIC1.2质量份时扩链PET膜的孔径最小(0.5μm左右),孔的分布最密集。保持TGIC扩链剂用量(1.2质量份)不变,扩链PET膜的孔径随着NMP初始浓度的减小而减小。NMP的初始质量浓度为10%时,PET膜是由微孔和球两部分组成。
综述了国内外聚烯烃塑料高压热降解的研究进展,讨论了压力对多种聚烯烃塑料的热降解速率、热降解产物的影响及其作用机理,同时展望了聚烯烃塑料高压热降解的发展前景和研究方向。
通过筛选适宜的催化和助剂体系,设计控制分子链的均一生长,同时采用可控流变工艺,在卧式平推流的串联反应器中制得低收缩率高抗冲聚丙烯产品PPB-MA10-G。在较高乙烯共聚量下,聚合平稳,粉料流动性能好。产品经下游厂家测试:力学性能满足要求,收缩率可以降低至1.26%,指标完全达到进口同类型产品要求。
通过二次挤出造粒和注射成型,将微胶囊红磷(HP)、松木粉、低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)按照一定比例共混,制备阻燃木塑复合材料(HP-WPC)。测定HP-WPC的极限氧指数、热重谱图,并采用Flynn-Wall-Ozawa(FWO)法对木塑复合材料的热分解动力学进行研究。结果表明:和未添加HP的木塑复合材料相比,当HP添加量为PE总量的10%时,复合材料的极限氧指数由22.5%上升到28.7%,阻燃级别达到UL94 V-0级,外推初始分解温度、最大失重速率温度和外推终止温度分别提
综述了近年来聚苯醚(PPO)树脂物理和化学改性的研究进展,分析了不同改性方式对PPO的微结构、热性能、力学性能、介电性能及加工性能的影响,并对改性PPO的未来发展方向及工业应用进行展望。
在不同加工温度和冷却温度下,使用PE100-RC高密度聚乙烯(PE)原料制成DN250/SDR11规格的本色料管样和混配料管样。进行不同压力下的PE管材耐快速裂纹扩展测试,分析影响PE管材耐快速裂纹扩展性能的因素。结果表明:炭黑加入量、过低的管材加工温度和冷却温度均会导致PE管材的耐快速裂纹扩展性能下降。