论文部分内容阅读
非线性流形学习可以准确反映现实非线性数据本质并进行较好的降维,但在语音情感识别过程中难以有效处理不断增加的语音数据集,也不能充分利用训练过程中的情感特征信息。针对上述情况,提出一种基于增量流形学习的语音情感特征降维方法。该方法利用等距映射将训练样本特征维数降至目标维数后,通过增量流形学习的方法分批求得测试样本的低维特征。实验结果表明,相比同类方法,该方法具有较低的运算复杂度和较高的识别率。