论文部分内容阅读
Modified magnetic starch nanoparticles (FA-StNP@Fe2O3) were synthesized by conjugating folic acid (FA-PEG-NH2) onto the surface of magnetic starch nanoparticles (StNP@Fe2O3) prepared by reverse microemulsion method. The synthesized FA-StNP@Fe2O3 was investigated by transmission electron microscopy and zeta potential analysis. The average size of its well dispersed particles was 250 nm. The iron concentration of 2 mg/g was detected by phenanthroline method. Placing FA-StNP@Fe2O3 nanoparticles in the alternating magnetic field for 30 min resulted in an increase in the suspension temperature from ambient temperature (37℃) to a value between 42℃ and 43℃. Co-cultured nanoparticles and Hela cell line or normal HUEC-12 cell line, and the biological effects at the cellular level were investigated in the alternating magnetic field using MTT assay, Hochest-PI double staining and flow cytometry analysis. Experimental results showed that FA-StNP@Fe2O3 within acertain concentration range has no obvious effect on cell proliferation. When treated in the magnetic field, apoptosis rate on Hela induced by FA-StNP@Fe2O3 was 13.4%. Prussian blue staining analysis confirmed that the nanoparticles modified with folic acid had improved ability in tumor cell-targeting, and therefore, potential applications in biomedical and magnetocaloric areas. It is expected be applied in tumor targeting therapy in the near future.
The synthesized FA-StNP @ Fe2O3 was synthesized by conjugating folic acid (FA-PEG-NH2) onto the surface of magnetic starch nanoparticles (StNP @ Fe2O3) prepared by reverse microemulsion method. investigated by transmission electron microscopy and zeta potential analysis. The average size of its well dispersed particles was 250 nm. The iron concentration of 2 mg / g was detected by phenanthroline method. Placing FA-StNP @ Fe2O3 nanoparticles in the alternating magnetic field for 30 min resulted in an increase in the suspension temperature from ambient temperature (37 ° C.) to a value between 42 ° C. and 43 ° C. Co-cultured nanoparticles and Hela cell line or normal HUEC-12 cell line, and the biological effects at the cellular level were investigated in the alternating magnetic field using MTT assay, Hochest-PI double staining and flow cytometry analysis. Experimental results showed that FA-StNP @ Fe2O3 within acertain concentration range has When treated in the magnetic field, the apoptosis rate on Hela induced by FA-StNP @ Fe2O3 was 13.4%. Prussian blue staining analysis confirmed that the nanoparticles modified with folic acid had improved ability in tumor cell-targeting, and therefore, potential applications in biomedical and magnetocaloric areas. It is expected be applied in tumor targeting therapy in the near future.