Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious bi

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:llt009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Increasing occurrence of intrinsically antimicrobial-resistant,human pathogens and the protective biofilm-mode in which they grow,dictates a need for the alternative control of infectious biofilms.Biofilm bacteria utilize dispersal mechanisms to detach parts of a biofilm as part of the biofilm life-cycle during times of nutrient scarcity or overpopulation.We here identify recent advances and future challenges in the development of dispersants as a new infection-control strategy.Deoxyribonuclease(DNase)and other extracellular enzymes can disrupt the extracellular matrix of a biofilm to cause dispersal.Also,a variety of small molecules,reactive oxygen species,nitric oxide releasing compounds,peptides and molecules regulating signaling pathways in biofilms have been described as dispersants.On their own,dispersants do not inhibit bacterial growth or kill bacterial pathogens.Both natural,as well as artificial dispersants,are unstable and hydrophobic which necessitate their encapsulation in smart nanocarriers,like pH-responsive micelles,liposomes or hydrogels.Depending on their composition,nanoparticles can also possess intrinsic dispersant properties.Bacteria dispersed from an infectious biofilm end up in the blood circulation where they are cleared by host immune cells.However,this sudden increase in bacte-rial concentration can also cause sepsis.Simultaneous antibiotic loading of nanoparticles with dispersant properties or combined administration of dispersants and antibiotics can counter this threat.Importantly,biofilm remaining after dispersant administration appears more susceptible to existing antibiotics.Being part of the natural biofilm life-cycle,no signs of“dispersant-resistance”have been observed.Dispersants are therewith promising for the control of infectious biofilms.
其他文献
Core-shell materials are promising broadband electromagnetic(EM)absorption materials since the highly component manipulation performance,interfacial effect etc.Herein,a well-defined core-shell shaped structure constructed by 2-dimensional MOS2 nanosheets-
Flexible,lightweight,conductive materials,having both high rf losses and high permeability,are extremely desirable for applications as electromagnetic(EM)shielding.Gas atomized spherical FeSi-based ferromagnetic metallic particles,having a mean diameter o
Hydrogels with good antifouling and mechanical properties as well as biocompatibility have great appli-cation potential in the field of biomedicine.In this paper,a newly double network(DN)hydrogel was prepared based on zwitterionic material sulfobetaine m
To evaluate the potential of high entropy alloys for marine applications,a new high entropy alloy coating of AlCrFeNiW0.2Ti0.5 was designed and produced on Q235 steel via laser cladding.The microstructure,microhardness and tribological performances slidin
Tuned tin chalcogenides rooted in hierarchical porous carbon(HPC)with N-carbon coating layers are prepared by thermal shock under various temperatures(denoted as HPC-SnS2-PAN-Various T).With the increase of annealing temperature,the morphology and phase s
Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit supe-rior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point di
High entropy pyrochlores(HEP)are potential candidates as dispersoids in the oxide dispersed strength-ened steels or alloys,which can be used in nuclear reactors and supercritical boilers.For the first time,HEP oxides Y2(TiZrHfMoV)2O7 were synthesized with
It is a challenge to reduce the dielectric loss and increase the tunability of pure barium strontium titanate(BST)films for microwave tunable application because these two properties change simultaneously.Herein,a novel composite of strontium titanate(ST)
Using natural product-based antifouling coatings has proven to be an effective strategy to combat biofoul-ing.However,their antifouling mechanisms are still unclear.In this study,the antifouling mechanism of natural product-based coatings consisting of bi
Hetero-structured thermally conductive spherical boron nitride and boron nitride nanosheets(BNN-30@BNNS)fillers were prepared via electrostatic self-assembly method.And the corresponding thermally conductive&electrically insulating BNN-30@BNNS/Si-GFs/E-44