拟南芥At1g10300基因调节叶形和开花时间

来源 :广西植物 | 被引量 : 0次 | 上传用户:y358549797
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要: 核仁G蛋白1(Nucleolar G protein 1, NOG1)是一種高度保守的核仁GTP酶,在真核生物中广泛存在,参与60 S核糖体亚基前体的组装。在线虫中敲减NOG1的表达造成生长缓慢、虫体变小和寿命延长的表型,而过量表达NOG1则使线虫的寿命缩短。拟南芥的At1g10300基因注释为NOG12,但是其生物学功能还有待研究。该研究对其功能进行了初步研究,首先检测了该基因在拟南芥各个器官的表达情况。结果表明:该基因在7 d龄幼苗、茎生叶和花中均有表达,其中在花中表达量最高。获得了At1g10300基因的TDNA插入突变体,发现在长日照条件下,At1g10300突变体植株的莲座紧凑,莲座叶片长宽比降低,但叶面积和植株高度与野生型相比无显著差异,表明其叶形发生改变;突变体植株的抽薹时间晚于野生型。荧光定量RTPCR结果表明,突变体植株中开花促进因子FT、CO和GI的表达水平下调,而开花抑制因子FLC的表达水平上调。以上结果揭示At1g10300基因的突变影响了FT、CO、GI及FLC基因的表达,使植株出现晚花表型。
  关键词: 拟南芥, 核仁G蛋白1, At1g10300基因, 开花时间, 叶形
  中图分类号: Q945.4文献标识码: A文章编号: 10003142(2017)08100008
  Abstract: Nucleolar G protein 1 (NOG1) is a highly conserved eukaryotic GTPase. NOG1 plays a significant role in the assembly of pre60S ribosomal subunits. In yeast and animals, depletion of NOG1 results in reduced levels of 60S ribosomal subunits, aberrant prerRNA processing, and blockage of 60S ribosomal subunit export. A recent study in Caenorhabditis elegans found that knockdown NOG1 expression causes slower growth, smaller body size and increased life span, whereas overexpression of NOG1 results in decreased lifespan. However, the plant NOG1 has not been characterized. The Arabidopsis At1g10300 gene was annotated as NOG1-2. However, its role in Arabidopsis growth and development is still unknown. In this study, we used physiological, genetics and molecular tools to analyze the biological roles of the Arabidopsis At1g10300 gene. We firstly used semiquantitative RTPCR to investigate the transcriptional levels of At1g10300 gene in various tissues of Arabidopsis, including 7dayold seedling, rosette leaf, cauline leaf, stem, bud and flower. The transcription of the At1g10300 gene was detected in seedlings, cauline leaves and blooming flowers. Among them, the highest transcriptional level was detected in blooming flowers. We then isolated a TDNA insertion mutant allele of the At1g10300 gene. Phenotypic analysis found that the At1g10300 mutant had compact rosette and reduced ratio of leaf length/width compared to wild type. However, there was no significant difference in leaf area or plant height between the At1g10300 mutant and wild type. These data indicated that leaf morphology of At1g10300 mutant was altered. The At1g10300 mutant also displayed a late bolting phenotype under the condition of longday photoperiod. To determine the molecular mechanism of this late flowering phenotype, we used quantitative RTPCR to analyze the transcriptional levels of key genes of the flowering time pathway, including FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI) and FLOWERING LOCUS C (FLC). The results showed that the transcriptional levels of the flowering promoting factors FT, CO and GI were downregulated in the mutant plants compared with the wild type, whereas the transcription levels of the flowering inhibiting factor FLC was upregulated. Taken together, these results suggest that mutation of At1g10300 gene delays flowering time by regulating the expressions of FT, CO, GI and FLC genes in Arabidopsis. Our data indicate that like its ortholog in worms, lossoffunction of At1g10300 gene also affects Arabidopsis rosette size and lifespan.   Key words: Arabidopsis, nucleolar G protein 1 (NOG1), At1g10300 gene, flowering time, leaf morphology
  小G蛋白是一类通过结合并水解鸟嘌呤5′三磷酸(GTP)成为鸟嘌呤5′二磷酸(GDP)从而将细胞信号传递到下游因子的蛋白(Bourne et al,1991)。小G蛋白参与调控细胞生命活动的各个方面,包括细胞增殖、囊泡运输、微管骨架的组装和核糖体的生成。核仁G蛋白1(Nucleolar G protein1, NOG1)是一种高度保守的核仁GTP酶,在真核生物中广泛存在,参与60S核糖体亚基前体的组装 (Park et al,2001;Jensen et al,2003;Kallstrom et al,2003)。在线虫中敲减NOG1的表达造成生长缓慢、虫体变小和寿命延长的表型,而过量表达NOG1则使线虫的寿命缩短(Kim et al,2014)。Wu et al(2016)对60S核糖体亚基前体的结构解析发现,NOG1与多个组装蛋白和核糖体RNA相互作用,是60S核糖体亚基组装和运输到核外的重要元件。目前关于植物NOG1同源基因的研究报道相对较少。拟南芥中存在At1g50920和At1g10300两个NOG1的同源基因,分别注释为NOG11和NOG12,二者编码的蛋白均定位于细胞核中(Suwastika et al,2014)。但其是否具有与酵母和线虫NOG1蛋白类似的功能以及在植物生长发育中的作用还有待研究。拟南芥基因表达数据库的资料显示At1g10300基因在花中表达水平较其他组织高,故推测其可能与植物的开花相关。Heo et al(2012)研究表明,钙离子依赖的G蛋白XLG2 (Extralarge G Protein 2, XLG2)可以促进开花整合因子FT(FLOWERING LOCUS T)和SOC1/AGL20 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1)的表达,促使拟南芥提早开花。
  拟南芥的开花时间受许多内部和外部因素的调控,可归为4个基本途径,即光周期途径(photoperiod pathway)、自主途径 (autonomous pathway)、春化途径(vernalization pathway) 和赤霉素途径(GA pathway)(Mouradov et al,2002; Simpson & Dean,2002)。一般认为有两个基因在这些促进开花途径的下游起作用,其中一個是CONSTANS(CO)基因,另一个是FLOWERING LOCUS C(FLC)基因(李昱等,2007)。CO为光周期途径下游的主要调控因子,也是生物钟调节途径的关键基因,该基因编码具有两个Bbox类型锌指结构的GATA转录因子,其C端有CTT域(Putterill et al,1995; SuárezLópez et al,2001; 张素芝和左建儒,2006)。GI基因也属于光周期途经中,是独立于CO通过miR172来调节开花的(Jung et al,2007)。FLC编码一个含MADS结构域的转录因子,是开花抑制因子。自主途径和春化作用都是通过抑制FLC的表达促进开花的。因此,FLC是自主途径和春化途径的调节节点(Michaels & Amasino,2001)。而成花素基因FT在调控开花时间途径的下游起整合因子的作用(Samach et al,2000)。
  为了研究At1g10300基因的功能,我们通过半定量RTPCR测定了该基因在拟南芥各个组织器官的表达情况,并获得了该基因的纯合突变体,对其表型进行观察及定量分析,并运用荧光定量RTPCR测定了突变体中调控开花时间的关键基因CO、FLC、FT等的表达情况,为进一步研究At1g10300基因在植物开花方面的调控机制奠定了基础。
  1材料与方法
  1.1 材料
  选用拟南芥哥伦比亚(Columbia, Col0)生态型作为研究材料。At1g10300基因的TDNA插入突变体SALK_043706订购自ABRC(Arabidopsis Biological Resource Center)拟南芥种子库。
  1.2 方法
  1.2.1 拟南芥的培养消毒:将拟南芥种子倒入1.5 mL离心管中,加入1 mL 70%乙醇消毒,颠倒混匀5 min后吸出液体;再用1 mL 1%的次氯酸钠消毒,颠倒混匀10 min;吸出次氯酸钠,用无菌蒸馏水冲洗种子4~5次,最后加入1 mL无菌蒸馏水。为使种子萌发整齐,放入4 ℃冰箱中,低温处理3 d。然后均匀铺在MS固体培养基表面,在植物光照培养箱中竖直放置。待培养至7 d,将幼苗移到土中,在光周期为16 h光/8 h暗的培养室中培养。
  1.2.2 拟南芥DNA的提取在1.5 mL的离心管中加入400 μL DNA提取缓冲液(0.2 mol·L1 TrisHCl、0.25 mol·L1 NaCl、0.5% SDS、0.025 mol·L1 EDTA),取约1 cm2的拟南芥叶片(3~4周龄植株)放入上述DNA提取缓冲液中,用研磨棒将叶片研碎成匀浆。之后14 000 r·min1离心10 min,用移液枪吸取200 μL上清转移到新管中,加入400 μL无水乙醇,颠倒混匀。10 000 r·min1离心1 min,倒掉上清,沉淀于室温下晾干。最后加入50~100 μL无菌水溶解DNA。提取到的拟南芥基因组DNA可在4 ℃条件下保存至少1个月。
  1.2.3 总RNA的提取和cDNA的合成分别采集野生型拟南芥的7 d龄幼苗、莲座叶、茎生叶、茎的第二节间、花苞和盛开的花用于At1g10300基因表达模式的分析。采集24 d苗龄的野生型和突变体植株的莲座叶用于突变体植株的转录水平分析。分别取约100 mg植物材料,用“酸性酚-硫氰酸胍-酚氯仿提取法”提取总RNA,对得到的总RNA进行琼脂糖凝胶电泳检测其质量;对粗提后的RNA进行DNAase I消化并除去多糖、蛋白质等成分,用琼脂糖凝胶电泳检测纯化后的RNA的质量。用反转录试剂盒对2 μg总RNA进行反转录,在PCR仪中42 ℃反应30 min,85 ℃保温5 min使酶失活,即合成cDNA。   1.2.4 半定量RTPCR分析采用反转录后合成的cDNA,通过PCR检测At1g10300基因的转录水平,并选用ACTIN2基因作为内参。反应程序:预变性 94 ℃ 5 min; 变性94 ℃ 30 s,退火57 ℃ 30 s,延伸 72 ℃ 30 s,35个循环。共进行3次实验重复。
  1.2.5 荧光定量RTPCR分析以24 d苗龄的野生型和突变体植株的莲座叶的总RNA反转录得到的cDNA作模板,以ACTIN2基因为内参,进行定量 PCR反应。采用Primer Premier 5.0软件设计At1g10300基因的特异引物作为扩增引物。扩增程序如下:预变性94 ℃ 2 min; 变性94 ℃ 10 s,退火60 ℃ 10 s,延伸 72 ℃ 30 s,40个循环。3次实验重复。
  2结果与分析
  2.1 At1g10300基因的表达模式
  为了探究At1g10300基因在拟南芥中的时空表达模式,我们取野生型拟南芥的7 d龄幼苗、莲座叶、茎生叶、第二节间茎、花苞和盛开的花作为材料,提取其总RNA并反转录获得cDNA,通过RTPCR来检测拟南芥不同组织中At1g10300基因的表达水平。结果显示At1g10300基因在成熟的花中表达量最高,在7 d幼苗和茎生叶中也有一定的表达(图1)。这暗示着At1g10300基因对拟南芥的开花有一定作用。
  2.3 At1g10300突变体叶形改变
  对At1g10300基因突变体植株的生长发育情况进行观察,发现与野生型相比,At1g10300突变体植株莲座形态较紧凑(图3:A),测量结果也表明其莲座直径显著小于野生型(图3:B)。为探究产生这一表型的原因,首先测量了植株的叶柄长度,发现At1g10300突变体植株与野生型的叶柄长度无显著差异(图3:C)。接下来测量了叶片长度和叶片宽度,结果显示At1g10300突变体植株的叶片长度比野生型小0.4~0.7 cm(图3:D),且差异极显著(P<0.01),叶片宽度比野生型多0.3~0.5 cm(图3:E),且差异极显著(P<0.01),计算得出At1g10300突变体植株与野生型相比叶片长宽比显著降低(P < 0.01)(图3:F)。而经测量发现,虽然突变体植株叶片长度和宽度发生变化,但其叶面积与野生型相比并无显著差异(图3:G),植株高度(图3:H)也无显著变化。以上结果表明,At1g10300突变体特异地影响了叶片的形态,使叶片长度缩短,宽度变宽,造成莲座紧凑的表型。
  2.4 At1g10300突变体开花延迟
  观察发现At1g10300突变体植株开花明显晚于野生型(图4:A)。拟南芥植株在营养生长过程中莲座叶持续成对出现直至其转变为生殖生长,而植株的抽薹正是其由营养生长转变为生殖生长的重要节点,因此为了准确衡量野生型与At1g10300突变体植株的开花时间,选取植株抽薹时间以及植株抽薹时的叶片数来进行统计。结果显示At1g10300突变体植株比野生型植株抽薹时间晚3~5 d (图4:B),开花时突变体莲座叶片数比野生型多7~10片(图4:C)。以上结果表明,At1g10300突变体植株出现明显的开花延迟的表型。
  2.5 At1g10300突变体植株中开花时间相关基因的表达量改变
  基于上述表型观察及统计结果,对于At1g10300突变体植株开花推迟的分子机制开展进一步探究。首先选择控制植物由营养生长转变为生殖生长的关键基因FT,测定其在野生型及突变体中的相对表达水平,发现在At1g10300突变体植株中FT基因的相对表达量比野生型降低了一倍多(图5:A)。接下来测定了控制开花时间的正调节基因CO、GI以及负调节基因FLC的转录情况,结果表明在At1g10300突变体植株中CO及GI基因的相对表达量比野生型降低50%左右(图5:BC);而突变体中开花时间负调节因子FLC的相对表达量则比野生型提高20多倍(图5:D)。因此,At1g10300基因突变使开花时间正调节基因FT CO和GI的转录水平降低, 使开花抑制基因FLC的表达上调, 造成突变体植株晚花的表型。
  3讨论
  本研究通过植物生理学、遗传学和分子生物学手段初步分析了拟南芥注释为编码NOG1的At1g10300基因的功能。对At1g10300突变体植株的表型观察表明,突变体开花延迟,并检测了At1g10300突变体植株中CO、GI、FLC和FT基因的相对表达情况。本研究结果表明,由于At1g10300基因功能的缺失,导致CO和GI基因表达量降低,FLC基因表达量升高,进而影响FT基因表达量降低,最终导致突变体植株的晚花表型。但是,At1g10300基因是如何调节这些开花时间相关基因的表达还有待进一步研究。线虫中的研究发现,NOG1基因可通过胰岛素信号通路调节线虫的脂肪积累、生长速率和寿命长短(Kim et al, 2014)。拟南芥At1g10300基因是否通过某种信号通路调节开花基因的表达还有待后续的研究。
  At1g10300突变体莲座叶形态发生改变,与野生型相比突变体莲座叶片变短、变宽,但叶面积无显著差异。叶在空间三维轴向上的极性包括第一维轴向是基—顶轴(proximaldistal axis),基部靠近茎顶端分生组织分化出叶柄,遠离茎顶端分生组织分化出叶片。第二个轴向是中—侧轴(mediallateral axis),沿着叶的中脉向叶的边缘水平扩展的方向。第三个轴向是近—远轴(adaxialabaxial axis),也称背—腹轴(dorsalventral axis),叶原基靠近茎顶端分生组织的一侧称为近轴面(背面),远离茎顶端分生组织的一侧称为远轴面(腹面)。本研究中,At1g10300突变体植株的基—顶轴分化显著缩短,中—侧轴分化显著增加,长宽比显著缩短。拟南芥的叶沿基—顶轴分化会产生基部的叶柄和顶部的叶片,ROTUNDIFOLIA3/4(ROT3/4)是调控拟南芥叶基—顶轴极性的两个基因。ROT3编码细胞色素P450家族的CYP90C1,参与油菜素内脂(BR)的合成,可能通过BR影响细胞的极性扩展来调节叶的长度(Kim et al,2005)。ROT4编码一种小肽,可能通过抑制细胞在基—顶轴方向的分裂来调节叶的长度(Narita et al,2004)。拟南芥ANGUSTIFOLIA(Folkers et al,2002; Kim et al,2002)和SPIKE1主要通过影响细胞在中—侧轴方向的生长来调节叶的宽度(Tsuge et al,1996), 而ANGUSTIFOLIA3则主要通过调控中—侧轴方向上的细胞数量来调控叶的宽度(Horiguchi et al,2005)。叶在基—顶轴和中—侧轴两个轴向上的协调生长,决定了叶具有一定的长/宽比(Tsukaya,2006)。At1g10300基因的缺失,可能影响到上述调节叶片形态的相关基因的表达,进而产生叶片长宽比显著减小的表型。   综上所述,本研究获得了At1g10300基因功能缺失的突变体,其与野生型相比出现了明显的开花延迟,莲座叶片形态改变的表型。突变体中开花时间的正调节因子CO、GI、FT基因的相对表达量显著降低,而负调节因子FLC基因的相对表达量显著升高。以上结果表明At1g10300基因在调控植物的生长发育中起到重要作用,也为今后深入研究At1g10300基因在植物开花过程和叶形态建成中的作用打下了基础。
  参考文献:
  BOURNE HR, SANDERS DA, MCCORMICK F, 1991. The GTPase superfamily: conserved structure and molecular mechanism [J]. Nature, 349(6305): 117-127.
  DUGAS DV, BARTEL B, 2004. MicroRNA regulation of gene expression in plants [J]. Curr Opin Plant Biol, 7(5): 512-520.
  EMERY JF, FLOYD SK, ALVAREZ J, 2003. Radial patterning of Arabidopsis shoots by class III HDZIP and KANADI genes [J]. Curr Biol, 13(20): 1768-1774.
  FOLKERS U, KIRIK V, SCHOBINGER U,et al, 2002. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARSlike protein and is involved in the control of the microtubule cytoskeleton [J]. EMBO J, 21(6): 1280-1288.
  HEO JB, SUNG S, ASSMANN SM, 2012. Ca2+dependent GTPase, extralarge G protein 2 (XLG2), promotes activation of DNAbinding protein related to vernalization 1 (RTV1), leading to activation of floral integrator genes and early flowering in Arabidopsis [J]. J Biol Chem, 287(11): 8242-8253.
  HORIGUCHI G, KIM GT, TSUKAYA H, 2005. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana [J]. Plant J, 43(1): 68-78.
  JENSEN BC, WANG Q, KIFER CT, 2003. The NOG1 GTPbinding protein is required for biogenesis of the 60s ribosomal subunit [J]. J Biol Chem, 278: 32204-32211.圖 3At1g10300突变体叶片形态改变A. 四周苗龄的野生型和At1g10300突变体植株; B-G. 24 d苗龄的野生型和At1g10300
  突变体植株的莲座直径,叶片长度,叶片宽度,叶柄长度,叶片长宽比和叶面积; H. 野生型和At1g10300突变体植株最终植株高度;
  I. 展示叶片长度、宽度和叶柄长度的测量方法。n = 20,3次实验重复,**表示极显著差异,经t检验, P<0.01。下同。
  Fig. 3At1g10300 mutation effects on leaf morphologyA. Phenotypes of fourweekold wildtype and At1g10300 mutant;
  B-G. Rosette diameter, length and width of leaf, length of petiole, ratio of leaf length/width, and leaf area of 24dayold wildtype
  and At1g10300 mutant; H. Height of mature wildtype and At1g10300 mutant plants; I. Schematic measuring of length and
  width of leaf, and length of petiole. The data were derived from three experiments and are presented as the x ± s
  (n = 20 for three experiments, ** means extreme differences, P < 0.01, Student’s ttest). The same below.
  JUNG J, SEO Y, SEO PJ, 2007. The GIGANTEAregulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis [J]. Plant Cell, 19(9): 2736-2748.   JUAREZ MT, KUI JS, THOMAS J, 2000. MicroRNAmediated repression of rolled leaf1 specifies maize leaf polarity [J]. Nature, 428(6978): 84-88.
  KALLSTROM G, HEDGES J, JOHNSON A, 2003. The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subnit biogenesis and are localized to the nucleus and cytoplasm, respectively [J]. Mol Cell Biol, 23 (12): 4344-4355.
  KIDNER C.A, MARTIENSSEN RA, 2004. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1 [J]. Nature, 428(6978): 81-84.
  KIM YI, BANDYOPADHYAY J, CHO I, et al, 2014. Nucleolar GTPase NOG1 regulates development, fat storage, and longevity through insulin/IGF signaling in C. elegans [J]. Mol Cells, 37 (1):51-57.
  KIM GT, FUJIOKA S, KOZUKA T, et al, 2005. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana [J]. Plant J, 41(5): 710-721.
  LI Y, LUO ZP, ZHAO SQ, 2007. Integration pathway of flowering time control in Arabidopsis [J]. Plant Physiol Comm, 43(5): 799-804. [李昱, 羅志鹏, 赵淑清, 2007. 拟南芥开花时间调控的整合途径 [J]. 植物生理学通讯,43(5): 799-804.]
  MALLORY AC, REINHART BJ, JONESRHOADES MW, 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5’ region [J]. Embo J, 23(16): 3356-3364.
  MICHAELS SD, AMASINO RM, 2001. Loss of flowering locus C activity eliminates the lateflowering phenotype of frigida and autonomous pathway mutations but not responsiveness to vernalization [J]. Plant Cell, 13(4): 935-941.
  MOURADOV A, CREMER F, COUPLAND G, 2002. Control of flowering time: interacting pathways as a basis for diversity [J]. Plant Cell, 14: 111-130.
  NARITA NN, MOORE S, HHOIGUCHI G, et al, 2004. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana [J]. Plant J, 38: 699-713.
  PARK JH, JENSEN BC, KIFER CT, et al, 2001. A novel nucleolar Gprotein conserved in eukaryotes [J]. Cell Sci, 114(Pt1): 173-185.
  PUTTERILL J, ROBSON F, LEE K, et al, 1995. The COSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zincfiger transcription factors [J]. Cell, 80: 847-857.
  SAMACH A, ONOUCH H, GOLD SE, 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis [J]. Science, 288(5471): 1613-1616.
  SIMPSON GG, DEAN C, 2002. Arabidopsis, the Rosetta stone of flowering time [J]. Science, 296(5566): 285-289.   SUAREZLOPEZ P, WHEATLEY K, ROBSON F, 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature, 410(6832): 1116-1120.
  SUWASTIKA IN, DENAWA M, YOMOGIJARA, 2014. Evidence for lateral gene transfer (LGT) in the evolution of eubacteriaderived small GTPases in plant organelles [J]. Front Plant Sci, 5: 678.
  TSUGE T, TSUKAYA H, UCHIMIYA H, 1996. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana(L.) [J]. Heynh Dev, 122(5): 1589-1600.
  TSUKAYA H, 2006. Mechanism of leafshape determination [J]. Ann Rev Plant Biol, 57: 477-496.
  WU S, TUTUNCUOGLU B, YAN K, et al, 2016. Diverse roles of assembly factors revealed by structures of late nuclear pre60S ribosomes [J]. Nature, 534 (7605):133-137.
  YAO Y, WANG XP, 2015. Molecular mechanisms of flowering in Arabidopsis thaliana [J]. J Anhui Agric Sci, 43(9): 7-10. [姚远, 王晓萍, 2015. 拟南芥开花相关的分子调控机制的研究 [J]. 安徽农业科学, 43(9): 7-10.]
  ZHANG SZ, ZUO JR, 2006. Advance in the flowering time control of Arabidopsis [J]. Prog Biochem Biophys, 33(4): 301-309. [张素芝, 左建儒, 2006. 拟南芥开花時间调控的研究进展 [J]. 生物化学与生物物理进展, 33(4): 301-309.]
其他文献
血液透析通路是保证维持性血液透析患者安全、有效的重要前提之一。在临床工作中,常有老年、糖尿病、长期血透患者由于动脉粥样硬化、血管中层钙化、营养不良等因素给自身动静
目的:观察益肾活血胶囊治疗慢性肾衰竭(CRF)患者临床疗效及对血液流变学的影响。方法:慢性肾衰竭患者60例,随机分为治疗组和对照组,予优质低蛋白、低磷饮食,纠正水、电解质及酸碱平
为明确油棕鲜果穗产量构成因素之间的关系,利用相关性、回归和通径等分析方法,对58株油棕单株鲜果穗产量与其它性状相关性进行了研究。结果表明:油棕鲜果穗产量与鲜果穗重和每
目的:探讨大黄总蒽醌含药血清对体外培养NRK细胞水通道蛋白2(AOP2)、水通道蛋白4(AOP4)表达的调节效应。方法:16只SD大鼠随机分为正常组、大黄总蒽醌低、中、高剂量组(0,1400,2500,4500
目的:通过大样本临床观察研究氮芥、激素、肝素配合中药治疗难治性肾病综合征(RNS)的疗效及安全性。方法:1090例RNS患者分为儿童和成人试验组予以氮芥+激素+肝素+中药治疗,儿童和成
摘 要:荔枝科是被子植物的基部类群之一,依兰属是番荔枝科较为原始的类群,其有性生殖过程,特别是胚胎发生与发育的研究结果,可以补充被子植物胚胎学原始特征的相关基础资料。该研究利用常规石蜡切片技术,对依兰胚珠、大孢子和雌配子体的发生发育过程进行了观察。结果表明:依兰的胚珠为倒生胚珠、厚珠心、三层珠被,第三层珠被(中间珠被)发生在大孢子母细胞时期,于外珠被与内珠被之间、胚珠合点端两侧发生并隆起;雌配子体
杓兰属(Cypripedium)植物因具有较高的观赏和药用价值而长期被过度采集,已成为濒危植物。利用菌根技术进行杓兰属植物的保护和人工栽培,需要获得其可培养的菌根真菌。该研究
该文报道了华南地区石灰岩地区苦苣苔科报春苣苔属(Primulina Hance)一新种——散序小花苣苔(Primulina effusa F.Wen&B.Pan),并对该新分类群的濒危现状进行了评估,认为根据
摘要: 橡膠树树皮质膜H+ATPase在橡胶树产排胶过程中扮演着重要角色,制备高纯度及高活性的质膜是研究质膜H+ATPase特性和功能的必要条件。该研究以一年生巴西橡胶树(Hevea brasiliensis)树皮为材料,利用差速离心法获得粗膜微粒体,通过两相分配法分离纯化质膜,并研究两相体系中不同浓度聚合物(5.9%、6.1%、6.3%、6.5%、6.7%,W/W)和KCl(2、5、8、11、1
为了实现快腐蚕沙水稻安全生长与营养生态利用,该研究采用自主研发的蚕沙生物专用促腐剂,对蚕沙废弃物进行田间堆肥快腐处理,将处理后的蚕沙有机肥作为水稻基肥和分蘖肥施用,