论文部分内容阅读
The existing intelligent fault diagnosis techniques of bevel gear focus on single-sensor signal analysis under the steady operation condition.In this study,a new method is proposed based on ensemble deep transfer learning and multisensor signals to enhance the fault diagnosis adaptability and reliability of bevel gear under various operation conditions.First,a novel stacked autoencoder (NSAE) is constructed using a denoising autoencoder,batch normalization,and the Swish activation function.Second,a series of source-domain NSAEs with multisensor vibration signals is pretrained.Third,the good model parameters provided by the source-domain NSAEs are transferred to initialize the corresponding target-domain NSAEs.Finally,a modified voting fusion strategy is designed to obtain a comprehensive result.The multisensor signals collected under the different operation conditions of bevel gear are used to verify the proposed method.The comparison results show that the proposed method can diagnose different faults in an accurate and stable manner using only one target-domain sample,thereby outperforming the existing methods.