论文部分内容阅读
针对室内老人跌倒问题,提出一种室内人体跌倒行为识别方法.首先,提出基于卷积核分解与分组卷积的轻量化3D网络;之后融合浅层2D子网络与轻量化3D子网络,并采用随机滑动组合采样策略改进3D卷积行为识别网络.为进一步提高网络泛化性能,对视频帧进行视觉显著性检测,通过加强背景纹理与人物行为之间关联性提高真实场景识别准确度.实验结果表明:该网络参数量为6.9×10~6,时间复杂度降低至8.04×10~9;实现算法在室内跌倒行为识别任务上达到81.5%的准确度.