论文部分内容阅读
针对长时间运动目标跟踪中因目标严重形变、短暂离开视线、遮挡而引起的跟踪漂移或丢失问题,提出一个多特征融合的长时间目标跟踪算法.首先,提取图像的方向梯度直方图和纹理特征后,训练两个独立的特征模板,线性加权融合得出滤波模型.其次,设计一个存放高置信度跟踪结果的标签库,记录跟踪结果的位置信息、置信度、使用次数.最后,在跟踪漂移或失败时,结合EdgeBox产生的目标候选框,并快速从标签库中获取重新跟踪的初始帧,在线训练更新滤波模型,从而使算法在长时间跟踪时保持较高的鲁棒性和高效性.在公开数据集上与流行算法进