小晶粒ZSM-22的可控合成及其催化长链正构生物烷烃制航空煤油性能

来源 :化工进展 | 被引量 : 0次 | 上传用户:letaopangpang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由生物脱氧油制生物航空煤油具有较大应用潜力和发展前景,为了提高生物航煤的收率,开发性能更好的加氢裂化/异构化催化剂是关键.本文采用水热合成法,在低温陈化、加入晶种、提高合成凝胶的碱度或加入有机碱条件下,合成了平均c轴尺寸在100~330nm的小晶粒ZSM-22分子筛,进行了XRD、SEM、N2物理吸附、NH3-TPD和吡啶红外表征,并以生物质油加氢脱氧得到的长链正构生物烷烃为原料,考察了不同晶粒尺寸ZSM-22催化剂催化裂化和异构化制生物航空煤油的性能.结果表明,通过提高碱度合成的小晶粒H-ZSM-22具有较强的酸中心,较多可及的强B酸中心数量,其长链正构烷烃转化率可达80%以上.在此基础上,制备的Pt/ZSM-22催化剂具有较高的Pt分散度,表现出很好的加氢裂化/异构化性能,其长链正构烷烃的转化率高达97.79%,生物航煤收率达50.25%,航煤产物异正比为7.55.
其他文献
乙酰丙酸乙酯是一种潜在的生物质基平台化合物,在工业上具有很高的应用价值.乙酰丙酸乙酯传统的生产方法主要为间歇反应法,效率较低,产物分离困难且工艺流程较长.因此,本文提出了反应精馏工艺生产乙酰丙酸乙酯,在以中试实验结果为依据的基础上,使用Aspen Plus模拟软件建立了工艺流程,并考察了回流比、进料位置、进料摩尔比以及理论塔板数等关键参数,得到了常规单塔反应精馏工艺生产乙酰丙酸乙酯的最优配置.而后,为了得到纯度大于99.9%的乙酰丙酸乙酯,本文进一步提出了反应精馏双塔精制流程以及反应精馏隔壁塔流程,并通过
碳基负载型催化材料凭借独特的负载结构、优异的化学稳定性和吸附特性等优势,在环境催化领域展现出广阔的应用前景,有望成为新一代绿色催化剂.研究不同维度的碳基负载金属材料与催化过一硫酸氢盐(PMS)降解污染物之间的相关性,对开发具有针对性应用的环境功能材料具有重要的指导意义.因此,本文从不同维度的碳基负载金属催化材料出发,综述了零维、一维、二维以及三维碳基负载金属催化剂活化PMS在水处理中的应用,探讨了碳基材料与其负载金属之间的相互作用、非金属元素掺杂对催化剂活性的影响以及PMS的活化机理.最后,对负载型环境催
低阶煤的热解是我国煤炭清洁高效转化的重要方式,高温油气除尘困难是限制其产业化的瓶颈.低阶煤热解过程中的高温油气具有温度高、尘含量大、含大分子稠环芳烃、易冷凝等特点,易阻塞除尘器及工艺管道,腐蚀设备,降低产品品质.本文主要从工程化应用角度,对比了湿法除尘、旋风除尘、静电除尘、陶瓷管除尘、金属过滤器除尘、颗粒床除尘等主要高温除尘工艺在低阶煤热解高温油气除尘领域的应用现状,分析了各技术优缺点及领域内的专利情况,指出颗粒床除尘、催化除尘、组合除尘技术有望成为未来该领域的发展方向.
电催化还原CO2作为缓解能源危机和全球变暖的有效途径已成为催化领域的研究热点.然而,不同反应途径的氧化还原电位较为接近,使产物的选择性成为电催化还原CO2所需解决的主要问题.迄今为止,在水性电解质中可实现CO2选择性地转化为一氧化碳(CO)和甲酸(HCOOH).本文简述了电催化还原CO2制CO的机理,包括CO2吸附过程、二电子转移过程和CO脱附过程.从贵金属的晶面设计、形貌调控和表面功能化对反应活性和产物选择性的影响,铁卟啉、钴酞菁和镍三嗪在还原CO2为CO反应中的电子转移途径,非金属碳基材料中杂原子和碳
低碳烯烃选择氧化制备醛类等含氧化合物是生产有机化工中间体及产品的关键步骤,钼铋复合金属氧化物因其优异的催化性能在相关工业界和学术界受到广泛关注,然而目前关于该催化剂上选择氧化反应机制和催化反应本质等科学问题的认识尚未形成统一理论.本文系统综述了钼铋复合金属氧化物在催化低碳烯烃选择氧化制备醛类反应中的研究进展,包括催化剂微观结构的三种调控手段,即主组分钼酸铋物相结构、助剂及载体等对反应性能的影响,并对反应机理进行了深入讨论与总结.最后展望了钼铋复合金属氧化物在该选择氧化反应中的发展前景,为钼铋复合金属氧化物
针对页岩气压裂返排液化学需氧量(COD)高,难以直接排放的问题,研究了臭氧氧化(O3)、超声氧化(US)和臭氧与超声联用氧化(O3+US)三种方式降低页岩气压裂返排液COD的效果.结果表明:O3+US因能产生更多的自由基而具有更好的降低COD效果.O3+US联用氧化返排液过程中,首先是臭氧直接氧化有机污染物生成醛酮等物质,然后再是自由基氧化降解,返排液颜色会出现特征变化.另外研究了水样pH、超声波功率、催化剂种类和加量、反应时间等因素对O3+US联用氧化降低COD的影响,结果表明其降低COD的效率随pH的
在Al2O3、K2O、CaO三个基础助催化剂基础上,针对MgO、V2O5、ZrO2、WO3四种助催化剂,分别组成单变量、双变量、三变量和四变量共17个样品的实验方案,采用简单对比法,考察各变量对催化剂性能的影响,并采用SEM-EDS、H2-TPR、N2-TPD、XRD、BET等进行了表征.结果表明,单变量、双变量、三变量和四变量的样品中各自具有最高活性的样品都含有V2O5、ZrO2或WO3助催化剂,且每增加一个助催化剂,出口氨浓度就提高一个百分点,达到19.06%,相对提高24%,表明催化剂活性与助催化剂
光伏全覆盖的无盖板光伏/热(PV/T)系统结构简单,电性能优异而热效率偏低,有关其能量损失的研究还少有涉及.本文基于热力学第一、第二定律分别建立无盖板PV/T的能量平衡方程,搭建实验平台开展系统在不同温度、流量工况下的性能测试,结合电池温度曲线验证工质的冷却效果,并从焓-熵-?的角度对系统的热力学特性进行分析.研究发现,水冷通道提升了光伏组件的效率和温度场的均匀性,同时缩短水集热过程的时间将有助于系统节能和增加能量收益;环境温度是影响PV/T系统热效率、热?效率以及热损失率的重要因素,电效率则受流量变化的
目前工业上合成α-硝基萘仍然采用传统的混酸硝化法,然而该方法存在区域选择性不高、官能团耐受性差、产生过量酸性废液以及后处理费用高等诸多局限性,导致环境污染以及生产成本的提高,不符合绿色化学的理念.鉴于α-硝基萘的应用前景,本文通过浸渍-焙烧-还原等步骤设计合成一系列负载型铜催化剂,实现了萘向α-硝基萘的高效、经济、绿色的催化转化.其中,以ZSM-5等为载体合成的催化剂Cu/ZSM-5催化效果最好,以较高的分离产率(高达95%)和优异的区域选择性[(α-:β-)>(98:2)]得到了目标产物α-硝基萘,而且
CO2捕集与封存技术是目前实现碳减排最有效的方法.其中,CO2矿物封存(又称CO2矿化)是利用CO2与含钙镁硅酸盐矿物进行反应使CO2以稳定的碳酸盐形式永久储存起来.本文首先介绍了CO2矿化的基本原理和技术路线,其中间接矿化反应条件较温和、矿化效率更高、得到的产物也更纯,因此对于CO2间接矿化的研究也更广泛.本文综述并对比了天然矿物及工业固废矿化CO2的研究进展,指出工业固废更有利于CO2矿化过程.工业固废矿化CO2过程矿化CO2的同时处理了工业固废,实现以废治废,因此它在经济上也是具有一定优势.在此基础