论文部分内容阅读
Organic micropollutants, with high toxicity and environmental conc, are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD), biochemical oxygen demand (BOD), or total organic carbon (TOC)), and few has been known for their behaviors in different treatment processes. In this study, occurrence and removal of 17 organochlorine pesticides (OCPs), 16 polycyelic aromatic hydrocarbons (PAHs), and technical 4-nonylphenol (4-NP) in landfill leachate in a combined anaerobic-membrane bioreactor (MBR) were investigated. Chemical analyses were performed in leachates sampled from different treatment processes, using solid-phase extraction and gas chromatography with electron capture detector and mass spectrometry.Concentrations of OCPs, PAHs, and 4-NP in the raw leachate were detected within the range from ND (not detected) to 595.2 ng/L,which were as low as only 10-7-10-5 percentage of TOC (at the concentration of 2,962 mg/L). The removal of 4-NP was mainly established in the MBR process, in agreement with removals of COD, BOD, and TOC. However, the removals of OCPs and PAHs were different, mainly achieved in the anaerobic process. High removal efliciencies of both total organic constituents and organic micropollutants could be achieved by the combined anaerobic-MBR technology. The removal efficiencies of total organic constituents were in the order of BOD (99%) > COD (89%) > TOC (87%), whereas the removal efficiencies of investigated organic micropollutants were as follows: OCPs (94%) > 4-NP (77%) > PAHs (59%).