论文部分内容阅读
单调迭代法与上、下解结合是证明非线性系统的存在性的强有力的工具,使用这种方法研究非线性问题的解,不仅可以得到闭扇形区域上解的存在性结果,而且还可以提供数值解的方案,本文应用单调迭代法,在假设所包含的函数关于积分项是不减的条件下,得到了解的存在性的构造性证明,所构造序列是线性系统的解,所以较易计算,并且这一证明促进了单调迭代法在广义积分微分系统的发展。