论文部分内容阅读
本文对传统的可压缩流动中的通量分裂方法进行了修正,使其可以用于扰动方程的计算。利用这一方法,对来流马赫数Ma为4.5、雷诺数Re为10~5的可压缩平板边界层中扰动的演化进行了数值模拟。对于给定的基本流,在计算域入口加入T-S波扰动,研究扰动的空间发展演化。对于小幅值的扰动,计算得到的扰动幅值演化和扰动法向分布与线性稳定性理论的结果符合的很好。对于有限幅值的扰动,结果表明,各次谐波无论幅值还是扰动分布都与完整的Navier-Stocks方程计算的结果符合的很好,但由扰动方程得到的平均流修正比N-S方程得到的大一些,这也许是由于在N-S方程计算时,基本流与零阶谐波一起计算而产生的误差所至。
In this paper, the traditional method of flux splitting in compressible flow is modified so that it can be used to calculate the perturbation equation. Using this method, the evolution of perturbations in the compressible slab boundary layer with Ma 4.5 Ma and Re Re 10 5 was simulated. For a given elementary flow, T-S-wave perturbation is added to the entrance of the computational domain to study the spatial evolution of disturbances. For the small-amplitude disturbance, the calculated disturbance amplitude evolution and disturbance normal distribution agree well with the linear stability theory. For the limited amplitude perturbations, the results show that the harmonics, regardless of the amplitude and the perturbation distribution, are in good agreement with the results of the complete Navier-Stocks equation. However, the average flow correction obtained by the perturbation equation is better than the NS equation Larger, this may be due to the calculation of the NS equation, the basic flow and the zero-order harmonic errors arising from the calculation.