论文部分内容阅读
The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct the time-frequency(TF) spectrum of HWT is proposed, which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal. A new way to calculate the HWT coefficients is proposed. By zero padding the data taken out, the non-decimated coefficients of HWT are obtained. Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band. By taking the cross section of the new TF spectrum, the demodulation for the component at a certain frequency band can be realized. A comparison with the Hilbert demodulation combined with band-pass filtering is done, which indicates for multi-components, the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting. In the end, it is applied to bearing and gearbox fault diagnosis, and the results reflect that it can effectively extract the fault features in the signal.
The novel wavelet transform (HWT) and its fast-based based on fast Fourier transform (FFT) are introduced. A new method to construct the time-frequency (TF) spectrum of HWT is proposed, which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal. A new way to calculate the HWT coefficients is proposed. By zero padding the data taken out, the non-decimated coefficients of HWT are obtained. Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band. By taking the cross section of the new TF spectrum, the demodulation for a comparison with the Hilbert demodulation combined with band-pass filtering is done, which shows for multi-components, the method propos ed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting. In the end, it is applied to bearing and gearbox fault diagnosis, and the results reflect that it can effectively extract the fault features in the signal.