基于时间反转的二阶段Wi-Fi室内定位方法

来源 :计算机应用研究 | 被引量 : 7次 | 上传用户:LINGER123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
受Wi-Fi系统有限物理带宽限制,时间反转定位算法的定位精度难以得到提升。当定位范围较大时,在线定位阶段所需的匹配运算量更大,导致定位时间更长。针对上述问题,提出了一种基于时间反转的二阶段Wi-Fi室内定位方法。首先对接收信号强度和信道频率响应进行离线采集,利用接收信号强度和K近邻匹配算法进行位置粗估计,大致确定待测点所在范围。随后根据粗估计结果筛选原始指纹库,构建指纹库子集。在位置精估计阶段,计算待测点信道频率响应与指纹库子集中各参考点处信道频率响应的信号组合共振能量,通过最大值搜索寻找组合共振能
其他文献
针对车型种类复杂、车辆品牌繁多导致车型检索困难的问题,提出了基于深度特征编码的两级车辆检索方法。通过对深度卷积网络进行改进,构建适应车辆图像特征提取的深度卷积网络。采用两级检索策略以及相似性度量函数,有效地实现了车型和车辆品牌的检索。根据轿车、货车和客车三种车型的检索和车辆品牌的检索实验结果,表明该方法能够有效地提高车辆检索效率。
为了提高软件缺陷预测的准确率,利用布谷鸟搜索算法(Cuckoo Search,CS)的寻优能力和人工神经网络算法(Artificial Neural Network,ANN)的非线性计算能力,提出了基于CS-ANN的软件缺陷
随着片上网络的兴起和发展,针对带宽和时延约束下实现低功耗成为其设计的焦点之一。为此,提出一种基于量子蚁群映射算法的方法来解决片上网络设计中使IP核映射的通信功耗最小
最小顶点覆盖问题是一个应用很广泛的NP难题,针对该问题给出一种增量式属性约简方法。首先将最小顶点覆盖问题转换为一个决策表的最小属性约简问题;利用增量式属性约简思想,随着图中边数的增多,提出一种更新最小顶点覆盖的增量式属性约简算法;该算法时间复杂度低于计算整个图的最小顶点覆盖的时间复杂度,同时针对大规模图问题,可随着边的增加动态更新最小顶点覆盖,因此降低了属性约简的方法求解最小顶点覆盖问题的运行时间
股票研报是由金融行业分析师对股票相关新闻作出的分析和评价,它从专业角度分析此类新闻是否会对某股票的未来走势产生影响,并提出专业投资建议,往往比论坛分析更具权威性。
在传统的人工免疫网络基础上,将多智能体技术的典型策略融入到免疫网络的进化过程中。算法引入了邻域克隆选择,操作过程从局部到整体,能够更加全面地模拟免疫网络的自然进化模型;同时在免疫网络进化过程中增加了抗体间的竞争和协作操作,提高了网络的动态分析能力。后续实验中,分别采用常用的三组UCI数据和一幅红树林多光谱TM遥感图像对算法加以验证,实验结果表明算法对遥感图像有较高的分类效率,对UCI数据也有较好的
为了进一步提高无标志软件缺陷数据预测的精度,提出了一种基于超欧氏距离近邻传播的软件缺陷预测方法。在近邻传播算法中引入密度思想,定义了密度因子和超欧氏距离测度概念,设计了密度敏感相似度度量元(即密集度量元),解决了传统近邻传播算法采用欧氏距离表示数据相似度难以有效处理复杂结构数据的不足。该方法应用于无标志软件缺陷数据的预测,并通过三组航空航天软件数据仿真验证了该方法的有效性,提高了无标志软件缺陷数据
为同时保证无线传感器网络数据的可靠传输,降低密集传感器网络中冗余的传输链路产生的节点之间的干扰对网络传输的影响,需要对网络的拓扑密度进行控制。基于节点的真实信道传
针对传统决策树分类算法需要依靠人工构造特征才能实现对数据进行分类的问题,以及其在处理海量天文数据时所面临的处理速度和资源分配瓶颈问题,结合深度学习强大的特征学习能力和Spark高效的数据处理性能,提出了一种基于Spark平台的深度感知决策树并行化算法,并将其应用于天文恒星/星系分类问题中。研究结果表明,该算法具有很好的可伸缩性,可以通过增加Spark集群计算节点的数量,来减少分类模型所需的训练时间
网页标题具有简洁、信息量大的特点,而且其中蕴涵了丰富、动态、复杂的人物关系。主要针对网页标题文本中的人物关系抽取进行研究,提出一种双模型投票的机器学习方法。针对19种关系类型分别进行特征抽取和选择;使用两种统计模型——最大熵和支持向量机分别进行模型训练;对于每种关系类型利用模型投票的方法,即选择训练集中得到性能较好的模型作为该类的模型,最后使用训练好的模型对测试集进行测试。结果显示,该方法对于人物