论文部分内容阅读
系统辨识是控制系统设计的基础。基于多层前馈神经网络结构,采用一种改进的BP算法,利用二阶梯度变尺度模型,完成了神经网络非线性系统辨识。与传统的辨识方法比较,神经网络应用于非线性系统辨识具有泛化功能和很好的容错能力,是一种不依赖模型的自适应函数估计器。采用一种改进的BP算法有效地改善了系统收敛速度慢的问题,BP模型已成为神经网络的重要模型之一,从而为控制系统正确设计奠定理论基础.