论文部分内容阅读
本文给出了基于 Gram-Schmidt正交化方法的超分辨算法,并分析了该算法对阵列幅度和相位误差的灵敏度。给出了两个目标、不同阵元数和不同间距等情况下的灵敏度计算结果。结果表明本文的算法在目标小角度间隔、大阵元数的情况下,受幅相误差的影响没有最大似然估计(MLM)和 MUSIC算法敏感。
This paper presents a super-resolution algorithm based on the Gram-Schmidt orthogonalization method and analyzes the sensitivity of the algorithm to array amplitude and phase error. The results of sensitivity calculation with two targets, different array elements and different pitches are given. The results show that the proposed algorithm is not sensitive to maximum likelihood estimation (MLM) and MUSIC algorithm due to the effects of amplitude and phase errors in the case of small target angular spacing and large array elements.